一、迭代器
I、迭代的概念
#迭代器即迭代的工具,那什么是迭代呢?
#迭代是一个重复的过程,每次重复即一次迭代,并且每次迭代的结果都是下一次迭代的初始值 while True: #只是单纯地重复,因而不是迭代 print('===>') l=[1,2,3] count=0 while count < len(l): #迭代 print(l[count]) count+=1
II、为何要有迭代器?什么是可迭代对象?什么是迭代器对象?
#1、为何要有迭代器?
对于序列类型:字符串、列表、元组,我们可以使用索引的方式迭代取出其包含的元素。但对于字典、集合、文件等类型是没有索引的,若还想取出其内部包含的元素,则必须找出一种不依赖于索引的迭代方式,这就是迭代器
#2、什么是可迭代对象?
可迭代对象指的是内置有__iter__方法的对象,即obj.__iter__,如下
'hello'.__iter__
(1,2,3).__iter__
[1,2,3].__iter__
{'a':1}.__iter__
{'a','b'}.__iter__
open('a.txt').__iter__
#3、什么是迭代器对象?
可迭代对象执行obj.__iter__()得到的结果就是迭代器对象
而迭代器对象指的是即内置有__iter__又内置有__next__方法的对象
文件类型是迭代器对象
open('a.txt').__iter__()
open('a.txt').__next__()
#4、注意:
迭代器对象一定是可迭代对象,而可迭代对象不一定是迭代器对象
III、迭代器对象的使用
dic={'a':1,'b':2,'c':3}
iter_dic=dic.__iter__() #得到迭代器对象,迭代器对象即有__iter__又有__next__,但是:迭代器.__iter__()得到的仍然是迭代器本身
iter_dic.__iter__() is iter_dic #True
print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
print(iter_dic.__next__()) #等同于next(iter_dic)
# print(iter_dic.__next__()) #抛出异常StopIteration,或者说结束标志
#有了迭代器,我们就可以不依赖索引迭代取值了
iter_dic=dic.__iter__()
while 1:
try:
k=next(iter_dic)
print(dic[k])
except StopIteration:
break
#这么写太丑陋了,需要我们自己捕捉异常,控制next,python这么牛逼,能不能帮我解决呢?能,请看for循环
IV、for循环
#基于for循环,我们可以完全不再依赖索引去取值了 dic={'a':1,'b':2,'c':3} for k in dic: print(dic[k]) #for循环的工作原理 #1:执行in后对象的dic.__iter__()方法,得到一个迭代器对象iter_dic #2: 执行next(iter_dic),将得到的值赋值给k,然后执行循环体代码 #3: 重复过程2,直到捕捉到异常StopIteration,结束循环
V、迭代器的优缺点
#优点: - 提供一种统一的、不依赖于索引的迭代方式 - 惰性计算,节省内存 #缺点: - 无法获取长度(只有在next完毕才知道到底有几个值) - 一次性的,只能往后走,不能往前退
二、生成器
I、什么是生成器
#只要函数内部包含有yield关键字,那么函数名()的到的结果就是生成器,并且不会执行函数内部代码 def func(): print('====>first') yield 1 print('====>second') yield 2 print('====>third') yield 3 print('====>end') g=func() print(g) #<generator object func at 0x0000000002184360>
II、生成器就是迭代器
g.__iter__ g.__next__ #2、所以生成器就是迭代器,因此可以这么取值 res=next(g) print(res)
III、练习
1、自定义函数模拟range(1,7,2)
示例代码:
def my_range(start,stop,step=1):
while start < stop:
yield start
start+=step
g=my_range(1,7,2)
print(next(g))
print(next(g))
print(next(g))
print(next(g))
2、模拟管道,实现功能:tail -f access.log | grep '404'
示例代码:
IV、携程函数
#yield关键字的另外一种使用形式:表达式形式的yield
def eater(name):
print('%s 准备开始吃饭啦' %name)
food_list=[]
while True:
food=yield food_list
print('%s 吃了 %s' % (name,food))
food_list.append(food)
g=eater('egon')
g.send(None) #对于表达式形式的yield,在使用时,第一次必须传None,g.send(None)等同于next(g)
g.send('蒸羊羔')
g.send('蒸鹿茸')
g.send('蒸熊掌')
g.send('烧素鸭')
g.close()
g.send('烧素鹅')
g.send('烧鹿尾')
V、练习
1、编写装饰器,实现初始化协程函数的功能
示例代码:
2、实现功能:grep -rl 'python' /etc
示例代码:
VI、yield总结
#1、把函数做成迭代器 #2、对比return,可以返回多次值,可以挂起/保存函数的运行状态
三、面向过程编程
#1、首先强调:面向过程编程绝对不是用函数编程这么简单,面向过程是一种编程思路、思想,而编程思路是不依赖于具体的语言或语法的。言外之意是即使我们不依赖于函数,也可以基于面向过程的思想编写程序 #2、定义 面向过程的核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么 基于面向过程设计程序就好比在设计一条流水线,是一种机械式的思维方式 #3、优点:复杂的问题流程化,进而简单化 #4、缺点:可扩展性差,修改流水线的任意一个阶段,都会牵一发而动全身 #5、应用:扩展性要求不高的场景,典型案例如linux内核,git,httpd #6、举例 流水线1: 用户输入用户名、密码--->用户验证--->欢迎界面 流水线2: 用户输入sql--->sql解析--->执行功能
四、三元表达式
name=input('姓名>>: ') res='SB' if name == 'alex' else 'NB' print(res)
五、列表推导式
#1、示例 egg_list=[] for i in range(10): egg_list.append('鸡蛋%s' %i) egg_list=['鸡蛋%s' %i for i in range(10)] #2、语法 [expression for item1 in iterable1 if condition1 for item2 in iterable2 if condition2 ... for itemN in iterableN if conditionN ] 类似于 res=[] for item1 in iterable1: if condition1: for item2 in iterable2: if condition2 ... for itemN in iterableN: if conditionN: res.append(expression) #3、优点:方便,改变了编程习惯,可称之为声明式编程
六、生成器表达式
#1、把列表推导式的[]换成()就是生成器表达式 #2、示例:生一筐鸡蛋变成给你一只老母鸡,用的时候就下蛋,这也是生成器的特性 >>> chicken=('鸡蛋%s' %i for i in range(5)) >>> chicken <generator object <genexpr> at 0x10143f200> >>> next(chicken) '鸡蛋0' >>> list(chicken) #因chicken可迭代,因而可以转成列表 ['鸡蛋1', '鸡蛋2', '鸡蛋3', '鸡蛋4',] #3、优点:省内存,一次只产生一个值在内存中
七、声明式编程练习题
1、将names=['egon','alex_sb','wupeiqi','yuanhao']中的名字全部变大写
2、将names=['egon','alex_sb','wupeiqi','yuanhao']中以sb结尾的名字过滤掉,然后保存剩下的名字长度
3、求文件a.txt中最长的行的长度(长度按字符个数算,需要使用max函数)
4、求文件a.txt中总共包含的字符个数?思考为何在第一次之后的n次sum求和得到的结果为0?(需要使用sum函数)
5、思考题
with open('a.txt') as f: g=(len(line) for line in f) print(sum(g)) #为何报错?
6、文件shopping.txt内容如下
mac,20000,3 lenovo,3000,10 tesla,1000000,10 chicken,200,1
求总共花了多少钱?
打印出所有商品的信息,格式为[{'name':'xxx','price':333,'count':3},...]
求单价大于10000的商品信息,格式同上
八、递归与二分法
I、递归调用的定义
#递归调用是函数嵌套调用的一种特殊形式,函数在调用时,直接或间接调用了自身,就是递归调用
II、递归分为两个阶段:递推,回溯
#图解。。。 # salary(5)=salary(4)+300 # salary(4)=salary(3)+300 # salary(3)=salary(2)+300 # salary(2)=salary(1)+300 # salary(1)=100 # # salary(n)=salary(n-1)+300 n>1 # salary(1) =100 n=1 def salary(n): if n == 1: return 100 return salary(n-1)+300 print(salary(5))
III、python中的递归效率低且没有尾递归优化
#python中的递归 python中的递归效率低,需要在进入下一次递归时保留当前的状态,在其他语言中可以有解决方法:尾递归优化,即在函数的最后一步(而非最后一行)调用自己,尾递归优化:http://egon09.blog.51cto.com/9161406/1842475 但是python又没有尾递归,且对递归层级做了限制 #总结递归的使用: 1. 必须有一个明确的结束条件 2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少 3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)
IV、可以修改递归最大深度
import sys sys.getrecursionlimit() sys.setrecursionlimit(2000) n=1 def test(): global n print(n) n+=1 test() test() 虽然可以设置,但是因为不是尾递归,仍然要保存栈,内存大小一定,不可能无限递归
V、二分法
想从一个按照从小到大排列的数字列表中找到指定的数字,遍历的效率太低,用二分法(算法的一种,算法是解决问题的方法)可以极大低缩小问题规模
实现类似于in的效果
l=[1,2,10,30,33,99,101,200,301,402] #从小到大排列的数字列表
def search(num,l):
print(l)
if len(l) > 0:
mid=len(l)//2
if num > l[mid]:
#in the right
l=l[mid+1:]
elif num < l[mid]:
#in the left
l=l[:mid]
else:
print('find it')
return
search(num,l)
else:
#如果值不存在,则列表切为空
print('not exists')
return
search(100,l)
实现类似于l.index(30)的效果
l=[1,2,10,30,33,99,101,200,301,402]
def search(num,l,start=0,stop=len(l)-1):
if start <= stop:
mid=start+(stop-start)//2
print('start:[%s] stop:[%s] mid:[%s] mid_val:[%s]' %(start,stop,mid,l[mid]))
if num > l[mid]:
start=mid+1
elif num < l[mid]:
stop=mid-1
else:
print('find it',mid)
return
search(num,l,start,stop)
else: #如果stop > start则意味着列表实际上已经全部切完,即切为空
print('not exists')
return
search(301,l)
九、匿名函数
I、什么是匿名函数
匿名就是没有名字 def func(x,y,z=1): return x+y+z 匿名 lambda x,y,z=1:x+y+z #与函数有相同的作用域,但是匿名意味着引用计数为0,使用一次就释放,除非让其有名字 func=lambda x,y,z=1:x+y+z func(1,2,3) #让其有名字就没有意义
II、有名字的函数与匿名函数的对比
#有名函数与匿名函数的对比 有名函数:循环使用,保存了名字,通过名字就可以重复引用函数功能 匿名函数:一次性使用,随时随时定义 应用:max,min,sorted,map,reduce,filter
十、内置函数
#注意:内置函数id()可以返回一个对象的身份,返回值为整数。这个整数通常对应与该对象在内存中的位置,但这与python的具体实现有关,不应该作为对身份的定义,即不够精准,最精准的还是以内存地址为准。is运算符用于比较两个对象的身份,等号比较两个对象的值,内置函数type()则返回一个对象的类型 #更多内置函数:https://docs.python.org/3/library/functions.html?highlight=built#ascii
format(了解即可)
#字符串可以提供的参数 's' None
>>> format('some string','s')
'some string'
>>> format('some string')
'some string'
#整形数值可以提供的参数有 'b' 'c' 'd' 'o' 'x' 'X' 'n' None
>>> format(3,'b') #转换成二进制
'11'
>>> format(97,'c') #转换unicode成字符
'a'
>>> format(11,'d') #转换成10进制
'11'
>>> format(11,'o') #转换成8进制
'13'
>>> format(11,'x') #转换成16进制 小写字母表示
'b'
>>> format(11,'X') #转换成16进制 大写字母表示
'B'
>>> format(11,'n') #和d一样
'11'
>>> format(11) #默认和d一样
'11'
#浮点数可以提供的参数有 'e' 'E' 'f' 'F' 'g' 'G' 'n' '%' None
>>> format(314159267,'e') #科学计数法,默认保留6位小数
'3.141593e+08'
>>> format(314159267,'0.2e') #科学计数法,指定保留2位小数
'3.14e+08'
>>> format(314159267,'0.2E') #科学计数法,指定保留2位小数,采用大写E表示
'3.14E+08'
>>> format(314159267,'f') #小数点计数法,默认保留6位小数
'314159267.000000'
>>> format(3.14159267000,'f') #小数点计数法,默认保留6位小数
'3.141593'
>>> format(3.14159267000,'0.8f') #小数点计数法,指定保留8位小数
'3.14159267'
>>> format(3.14159267000,'0.10f') #小数点计数法,指定保留10位小数
'3.1415926700'
>>> format(3.14e+1000000,'F') #小数点计数法,无穷大转换成大小字母
'INF'
#g的格式化比较特殊,假设p为格式中指定的保留小数位数,先尝试采用科学计数法格式化,得到幂指数exp,如果-4<=exp<p,则采用小数计数法,并保留p-1-exp位小数,否则按小数计数法计数,并按p-1保留小数位数
>>> format(0.00003141566,'.1g') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留0位小数点
'3e-05'
>>> format(0.00003141566,'.2g') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留1位小数点
'3.1e-05'
>>> format(0.00003141566,'.3g') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留2位小数点
'3.14e-05'
>>> format(0.00003141566,'.3G') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留0位小数点,E使用大写
'3.14E-05'
>>> format(3.1415926777,'.1g') #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留0位小数点
'3'
>>> format(3.1415926777,'.2g') #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留1位小数点
'3.1'
>>> format(3.1415926777,'.3g') #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留2位小数点
'3.14'
>>> format(0.00003141566,'.1n') #和g相同
'3e-05'
>>> format(0.00003141566,'.3n') #和g相同
'3.14e-05'
>>> format(0.00003141566) #和g相同
'3.141566e-05'
!!!lambda与内置函数结合使用!!!
字典的运算:最小值,最大值,排序
salaries={
'egon':3000,
'alex':100000000,
'wupeiqi':10000,
'yuanhao':2000
}
迭代字典,取得是key,因而比较的是key的最大和最小值
>>> max(salaries)
'yuanhao'
>>> min(salaries)
'alex'
可以取values,来比较
>>> max(salaries.values())
>>> min(salaries.values())
但通常我们都是想取出,工资最高的那个人名,即比较的是salaries的值,得到的是键
>>> max(salaries,key=lambda k:salary[k])
'alex'
>>> min(salaries,key=lambda k:salary[k])
'yuanhao'
也可以通过zip的方式实现
salaries_and_names=zip(salaries.values(),salaries.keys())
先比较值,值相同则比较键
>>> max(salaries_and_names)
(100000000, 'alex')
salaries_and_names是迭代器,因而只能访问一次
>>> min(salaries_and_names)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: min() arg is an empty sequence
sorted(iterable,key=None,reverse=False)
eval与exec
#1、语法
# eval(str,[,globasl[,locals]])
# exec(str,[,globasl[,locals]])
#2、区别
#示例一:
s='1+2+3'
print(eval(s)) #eval用来执行表达式,并返回表达式执行的结果
print(exec(s)) #exec用来执行语句,不会返回任何值
'''
6
None
'''
#示例二:
print(eval('1+2+x',{'x':3},{'x':30})) #返回33
print(exec('1+2+x',{'x':3},{'x':30})) #返回None
# print(eval('for i in range(10):print(i)')) #语法错误,eval不能执行表达式
print(exec('for i in range(10):print(i)'))
complie(了解即可)
compile(str,filename,kind)
filename:用于追踪str来自于哪个文件,如果不想追踪就可以不定义
kind可以是:single代表一条语句,exec代表一组语句,eval代表一个表达式
s='for i in range(10):print(i)'
code=compile(s,'','exec')
exec(code)
s='1+2+3'
code=compile(s,'','eval')
eval(code)
十一、阶段性练习
1、文件内容如下,标题为:姓名,性别,年纪,薪资
egon male 18 3000
alex male 38 30000
wupeiqi female 28 20000
yuanhao female 28 10000
要求:
从文件中取出每一条记录放入列表中,
列表的每个元素都是{'name':'egon','sex':'male','age':18,'salary':3000}的形式
2 根据1得到的列表,取出薪资最高的人的信息
3 根据1得到的列表,取出最年轻的人的信息
4 根据1得到的列表,将每个人的信息中的名字映射成首字母大写的形式
5 根据1得到的列表,过滤掉名字以a开头的人的信息
6 使用递归打印斐波那契数列(前两个数的和得到第三个数,如:0 1 1 2 3 4 7...)
7 一个嵌套很多层的列表,如l=[1,2,[3,[4,5,6,[7,8,[9,10,[11,12,13,[14,15]]]]]]],用递归取出所有的值