• HDU 5072 Coprime (单色三角形+容斥原理)


    题目链接:Coprime


    题面:

    Coprime

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 1181    Accepted Submission(s): 471


    Problem Description
    There are n people standing in a line. Each of them has a unique id number.

    Now the Ragnarok is coming. We should choose 3 people to defend the evil. As a group, the 3 people should be able to communicate. They are able to communicate if and only if their id numbers are pairwise coprime or pairwise not coprime. In other words, if their id numbers are a, b, c, then they can communicate if and only if [(a, b) = (b, c) = (a, c) = 1] or [(a, b) ≠ 1 and (a, c) ≠ 1 and (b, c) ≠ 1], where (x, y) denotes the greatest common divisor of x and y.

    We want to know how many 3-people-groups can be chosen from the n people.
     

    Input
    The first line contains an integer T (T ≤ 5), denoting the number of the test cases.

    For each test case, the first line contains an integer n(3 ≤ n ≤ 105), denoting the number of people. The next line contains n distinct integers a1, a2, . . . , an(1 ≤ ai ≤ 105) separated by a single space, where ai stands for the id number of the i-th person.
     

    Output
    For each test case, output the answer in a line.
     

    Sample Input
    1 5 1 3 9 10 2
     

    Sample Output
    4
     

    Source
    2014 Asia AnShan Regional Contest

    解题:
        题意求找出三数互质或都不互质的组数,直接肯定不行。

    此题原型为单色三角形,结果为C(3,n)-res,当中res为每一个与每一个数互质和不互质数量的乘积的累加。求与每一个数不互质的数量,用到了容斥原理。看似简单的原理应用却这么广泛,假设没做过容斥原理的题目,能够先试一下HDU 1796。
    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    using namespace std;
    bool status[100010];
    int factor[100010][8];
    int store[100010],cnt[100010];
    long long ans[100010],res;
    int one_amount[300];
    int refl[300][8];
    int cal[8];
    void prep()
    {
        memset(refl,0,sizeof(refl));
        int cont=0,temp;
       for(int i=0;i<256;i++)
       {
           temp=i;
           one_amount[i]=cont=0;
           while(temp)
           {
             if(temp%2)
             {
                 one_amount[i]++;
                 refl[i][cont]=1;
             }
             cont++;
             temp/=2;
           }
       }
    }
    bool is_prime(int a)
    {
    	if(a<=3)return true;
    	int x=sqrt(1.0*a);
    	for(int i=2;i<=x;i++)
    	{
    		if(a%i==0)
    			return false;
    	}
    	return true;
    }
    long long C(int x,int y)
    {
    	long long res=1;
    	for(int i=1;i<=x;i++)
    	{
    		res=res*(y-i+1)/i;
    	}
    	return res;
    }
    int main()
    {
    	int t,n,p,tmp;
    	long long temp;
    	scanf("%d",&t);
    	prep();
    	while(t--)
    	{
    		res=0;
    		memset(status,0,sizeof(status));
    		memset(factor,0,sizeof(factor));
    		memset(cnt,0,sizeof(cnt));
    		memset(ans,0,sizeof(ans));
    		scanf("%d",&n);
    		for(int i=0;i<n;i++)
    			scanf("%d",&store[i]);
    		for(int i=0;i<n;i++)
    			status[store[i]]=1;
            for(int i=2;i<=100000;i++)
    		{
    	       if(is_prime(i))
    		   {
    			   for(int j=i;j<=100000;j+=i)
    			   {
    				   if(status[j])
    				   {
    					   cnt[i]++;
    				   }
    				   p=0;
    				   while(factor[j][p])
    				   {
    					   p++;
    				   }
    				   factor[j][p]=i;
    			   }
    		   }
    		   else
    		   {
                 for(int j=i;j<=100000;j+=i)
    			   {
    				   if(status[j])
    				   {
    					   cnt[i]++;
    				   }
    			   }
    
    		   }
    		}
            for(int i=0;i<n;i++)
    		{
               tmp=store[i];
               p=0;
    		   while(factor[tmp][p])
    		   {
    			   cal[p]=factor[tmp][p];
    			   p++;
    		   }
    		   if(p==0)
    		   {
    			   ans[i]=0;
    			   continue;
    		   }
               tmp=1<<p;
    		   for(int j=1;j<tmp;j++)
               {
                  temp=1;
                  for(int k=0;k<p;k++)
                  {
                      if(refl[j][k])
                     {
                        temp=temp*cal[k];
                     }
    			   }
                  if(one_amount[j]%2)
                  ans[i]+=cnt[temp];
                  else
                  ans[i]-=cnt[temp];
              }
    		   ans[i]-=1;
    		}
    		for(int i=0;i<n;i++)
    		{
    			res+=(ans[i]*(n-ans[i]-1));
    		}
    		res/=2;
    		printf("%I64d
    ",C(3,n)-res);
    	}
    	return 0;
    }

    总结:
    用好容斥原理的关键在于,搞清楚集合的交的含义。


     

  • 相关阅读:
    Mac电脑kernel_task占用内存过高
    Mac上的聚焦搜索无法查找到应用
    Mac电脑变卡的原因:
    IE浏览器整页截屏程序
    拓扑排序算法的一个应用
    简单演示mySQL后端数据库关系信息逆向加入到PowerDesigner的物理数据模型和概念数据模型中
    解密存储过程或函数
    C#画图
    .NET设计模式开篇
    非重复随机序列生成算法
  • 原文地址:https://www.cnblogs.com/zhchoutai/p/7381113.html
Copyright © 2020-2023  润新知