• [暑假集训--数论]poj2034 Anti-prime Sequences


    Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement of these integers so that each adjacent pair of integers sums to a composite (non-prime) number. For example, if n = 1 and m = 10, one such anti-prime sequence is 1,3,5,4,2,6,9,7,8,10. This is also the lexicographically first such sequence. 

    We can extend the definition by defining a degree danti-prime sequence as one where all consecutive subsequences of length 2,3,...,d sum to a composite number. The sequence above is a degree 2 anti-prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically .rst degree 3 anti-prime sequence for these numbers is 1,3,5,4,6,2,10,8,7,9. 

    Input

    Input will consist of multiple input sets. Each set will consist of three integers, n, m, and d on a single line. The values of n, m and d will satisfy 1 <= n < m <= 1000, and 2 <= d <= 10. The line 0 0 0 will indicate end of input and should not be processed.

    Output

    For each input set, output a single line consisting of a comma-separated list of integers forming a degree danti-prime sequence (do not insert any spaces and do not split the output over multiple lines). In the case where more than one anti-prime sequence exists, print the lexicographically first one (i.e., output the one with the lowest first value; in case of a tie, the lowest second value, etc.). In the case where no anti-prime sequence exists, output 

    No anti-prime sequence exists. 

    Sample Input

    1 10 2
    1 10 3
    1 10 5
    40 60 7
    0 0 0
    

    Sample Output

    1,3,5,4,2,6,9,7,8,10
    1,3,5,4,6,2,10,8,7,9
    No anti-prime sequence exists.
    40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54

    需要一个 l 到 r 的排列,使得任意一个长度是2,3,...,k的子串当中子串和都不是质数

    直接搜就是了

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<cstring>
     4 #define LL long long
     5 using namespace std;
     6 inline LL read()
     7 {
     8     LL x=0,f=1;char ch=getchar();
     9     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    10     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    11     return x*f;
    12 }
    13 int l,r,d,haveans=0;
    14 bool mk[100010];
    15 bool mrk[100010];
    16 int s[100010];
    17 int p[100010],len;
    18 inline void getp()
    19 {
    20     for (int i=2;i<=10000;i++)
    21     {
    22         if (!mk[i])
    23         {
    24             p[++len]=i;
    25             for (int j=2*i;j<=10000;j+=i)mk[j]=1;
    26         }
    27     }
    28 }
    29 inline void dfs(int now)
    30 {
    31     if (now==r+1)
    32     {
    33         for (int i=l;i<r;i++)printf("%d,",s[i]);
    34         printf("%d
    ",s[r]);
    35         haveans=1;
    36         return;
    37     }
    38     for (int i=l;i<=r;i++)
    39     {
    40         if (mrk[i])continue;
    41         int sum=i,mrk2=1;
    42         for (int j=now-1;j>=max(l,now-d+1);j--)
    43         {
    44             sum+=s[j];
    45             if(!mk[sum]){mrk2=0;break;}
    46         }
    47         if (!mrk2)continue;
    48         mrk[i]=1;
    49         s[now]=i;
    50         dfs(now+1);
    51         if (haveans)return;
    52         s[now]=0;
    53         mrk[i]=0;
    54     }
    55 }
    56 int main()
    57 {
    58     getp();
    59     while (~scanf("%d%d%d",&l,&r,&d)&&l+r+d)
    60     {
    61         memset(mrk,0,sizeof(mrk));
    62         haveans=0;
    63         dfs(l);
    64         if (!haveans)puts("No anti-prime sequence exists.");
    65     }
    66 }
    poj 2034
  • 相关阅读:
    Mac OS X 背后的故事(九)半导体的丰收(下)
    Mac OS X 背后的故事(八)三好学生Chris Lattner的LLVM编译工具链
    Mac OS X背后的故事(十一)Mac OS X文件系统的来龙去脉(上)
    Mac OS X背后的故事(十一)Mac OS X文件系统的来龙去脉(下)
    Mac OS X 背后的故事(七)Cordell Ratzlaff 引发的 Aqua 革命(下)
    Mac OS X 背后的故事(五)JeanMarie Hullot的Interface Builder神话
    Mac OS X 背后的故事(九)半导体的丰收(上)
    Mac OS X 背后的故事(九)半导体的丰收(中)
    ORACLE跨数据库查询的方法[转自 huzhenwei的专栏]
    漂亮css选项卡效果大全 [转]
  • 原文地址:https://www.cnblogs.com/zhber/p/7285462.html
Copyright © 2020-2023  润新知