Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement of these integers so that each adjacent pair of integers sums to a composite (non-prime) number. For example, if n = 1 and m = 10, one such anti-prime sequence is 1,3,5,4,2,6,9,7,8,10. This is also the lexicographically first such sequence.
We can extend the definition by defining a degree danti-prime sequence as one where all consecutive subsequences of length 2,3,...,d sum to a composite number. The sequence above is a degree 2 anti-prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically .rst degree 3 anti-prime sequence for these numbers is 1,3,5,4,6,2,10,8,7,9.
We can extend the definition by defining a degree danti-prime sequence as one where all consecutive subsequences of length 2,3,...,d sum to a composite number. The sequence above is a degree 2 anti-prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically .rst degree 3 anti-prime sequence for these numbers is 1,3,5,4,6,2,10,8,7,9.
Input
Input will consist of multiple input sets. Each set will consist of three integers, n, m, and d on a single line. The values of n, m and d will satisfy 1 <= n < m <= 1000, and 2 <= d <= 10. The line 0 0 0 will indicate end of input and should not be processed.
Output
For each input set, output a single line consisting of a comma-separated list of integers forming a degree danti-prime sequence (do not insert any spaces and do not split the output over multiple lines). In the case where more than one anti-prime sequence exists, print the lexicographically first one (i.e., output the one with the lowest first value; in case of a tie, the lowest second value, etc.). In the case where no anti-prime sequence exists, output
No anti-prime sequence exists.
No anti-prime sequence exists.
Sample Input
1 10 2 1 10 3 1 10 5 40 60 7 0 0 0
Sample Output
1,3,5,4,2,6,9,7,8,10 1,3,5,4,6,2,10,8,7,9 No anti-prime sequence exists. 40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54
需要一个 l 到 r 的排列,使得任意一个长度是2,3,...,k的子串当中子串和都不是质数
直接搜就是了
1 #include<cstdio> 2 #include<iostream> 3 #include<cstring> 4 #define LL long long 5 using namespace std; 6 inline LL read() 7 { 8 LL x=0,f=1;char ch=getchar(); 9 while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} 10 while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} 11 return x*f; 12 } 13 int l,r,d,haveans=0; 14 bool mk[100010]; 15 bool mrk[100010]; 16 int s[100010]; 17 int p[100010],len; 18 inline void getp() 19 { 20 for (int i=2;i<=10000;i++) 21 { 22 if (!mk[i]) 23 { 24 p[++len]=i; 25 for (int j=2*i;j<=10000;j+=i)mk[j]=1; 26 } 27 } 28 } 29 inline void dfs(int now) 30 { 31 if (now==r+1) 32 { 33 for (int i=l;i<r;i++)printf("%d,",s[i]); 34 printf("%d ",s[r]); 35 haveans=1; 36 return; 37 } 38 for (int i=l;i<=r;i++) 39 { 40 if (mrk[i])continue; 41 int sum=i,mrk2=1; 42 for (int j=now-1;j>=max(l,now-d+1);j--) 43 { 44 sum+=s[j]; 45 if(!mk[sum]){mrk2=0;break;} 46 } 47 if (!mrk2)continue; 48 mrk[i]=1; 49 s[now]=i; 50 dfs(now+1); 51 if (haveans)return; 52 s[now]=0; 53 mrk[i]=0; 54 } 55 } 56 int main() 57 { 58 getp(); 59 while (~scanf("%d%d%d",&l,&r,&d)&&l+r+d) 60 { 61 memset(mrk,0,sizeof(mrk)); 62 haveans=0; 63 dfs(l); 64 if (!haveans)puts("No anti-prime sequence exists."); 65 } 66 }