• 《Hadoop权威指南 第4版》


    1. 实现一个简单的MapReduce

    • map函数进行准备数据,reduce函数进行处理

    引入pom依赖

        <dependencies>
            <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-core -->
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-mapreduce-client-core</artifactId>
                <version>2.7.1</version>
            </dependency>
    
            <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-common</artifactId>
                <version>2.7.1</version>
            </dependency>
        </dependencies>
    
    

    input.txt 简化后的数据源

    1950 0
    1950 22
    1950 -11
    1949 111
    1949 78
    1898 2222
    

    MaxTemperatureMapper.java 输入处理

    package test.chapter02;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    
    import java.io.IOException;
    
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    /**
     * @author baize
     * @description 查找最高气温的mapper类;
     * map函数进行准备数据,reduce函数进行处理;
     * Mapper四个参数对应: 输入键/输入值 / 输出键/输出值
     * @Date 2019/12/31 19:27
     */
    public class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
    
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            // 简单处理
            String line = value.toString();
            String year = line.substring(0, 4);
            int airTemperature = Integer.parseInt(line.substring(5, line.length()));
            // 写入到返回的键值对中
            context.write(new Text(year), new IntWritable(airTemperature));
        }
    }
    
    

    MaxTemperatureReducer.java 输出处理

    package test.chapter02;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    import java.io.IOException;
    
    /**
     * @author baize
     * @description 使用Reducer处理得到最高温度
     * @Date 2020/1/1 16:40
     */
    public class MaxTemperatureReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
            // Reducer中处理键值对, 将一对多转为一对一,仅保留最大的温度值
            int maxValue = Integer.MIN_VALUE;
            for (IntWritable x : values) {
                maxValue = Integer.max(x.get(), maxValue);
            }
            context.write(key, new IntWritable(maxValue));
        }
    }
    
    

    Main.java MapReduce作业处理

    package test.chapter02;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    import java.io.IOException;
    
    /**
     * @author baize
     * @description 负责运行MapReduce作业
     * @Date 2019/12/31 19:48
     */
    public class Main {
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
            if (args == null || args.length != 2) {
                System.out.println("Error! 计算最大问题异常!");
                System.exit(-1);
            }
    
            // 1.Job指定整个作业规范, 设置Jar包名字提交给Hadoop集群来运行作业
            Job job = new Job();
            job.setJarByClass(Main.class);
            job.setJobName("主测试");
    
            // 2.构造Job对象之后,指定输入输出数据的路径
            FileInputFormat.addInputPath(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[2]));
    
            // 3.指定map/reduce的Class类型
            job.setMapperClass(MaxTemperatureMapper.class);
            job.setReducerClass(MaxTemperatureReducer.class);
    
            // 4.控制输入输出数据的类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
    
            // 5.waitForCompletion 提交作业等待执行完成
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    }
    
    

    TODO

    • 使用maven 命令打成jar包
    • 放到hadoop上执行,查看输出
  • 相关阅读:
    OpenGL ES着色器语言之静态使用(static use)和预处理
    OpenGL ES着色器语言之着色概览(官方文档)
    OpenGL ES2.0入门详解
    OpenGL ES之glUniform函数
    C++矩阵处理库--Eigen初步使用
    启用PAE后虚拟地址到物理地址的转换
    八款值得尝试的精美的 Linux 发行版(2017 版)
    多了解一下Chrome开发者控制台
    [Win32]一个调试器的实现(五)调试符号
    解析pdb文件得到未导出变量地址(转)
  • 原文地址:https://www.cnblogs.com/zhazhaacmer/p/12127110.html
Copyright © 2020-2023  润新知