• Hbase第五章 MapReduce操作HBase


    容易遇到的坑:

      当用mapReducer操作HBase时,运行jar包的过程中如果遇到 java.lang.NoClassDefFoundError 类似的错误时,一般是由于hadoop环境没有hbase相关的jar包,这时候需要修改hadoop_env.sh文件,在最后面添加一行:

    HADOOP_CLASSPATH=/home/hadoop/apps/hbase/lib/*

    实例演示:

      pom.xml

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
        <groupId>cn.itcast.hbase</groupId>
        <artifactId>hbase</artifactId>
        <version>0.0.1-SNAPSHOT</version>
        <dependencies>
            <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-client -->
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-client</artifactId>
                <version>2.6.4</version>
            </dependency>
            <dependency>
                <groupId>junit</groupId>
                <artifactId>junit</artifactId>
                <version>4.12</version>
            </dependency>
            <!-- https://mvnrepository.com/artifact/org.apache.hbase/hbase-client -->
            <dependency>
                <groupId>org.apache.hbase</groupId>
                <artifactId>hbase-client</artifactId>
                <version>0.99.2</version>
            </dependency>
            <!-- https://mvnrepository.com/artifact/org.apache.hbase/hbase-server -->
            <dependency>
                <groupId>org.apache.hbase</groupId>
                <artifactId>hbase-server</artifactId>
                <version>1.4.0</version>
            </dependency>
        </dependencies>
    </project>

       HbaseWordCount.java

    package cn.itcast.bigdata.mapreduce;
    
    import java.io.IOException;
    import java.util.ArrayList;
    import java.util.List;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.hbase.HBaseConfiguration;
    import org.apache.hadoop.hbase.HColumnDescriptor;
    import org.apache.hadoop.hbase.HTableDescriptor;
    import org.apache.hadoop.hbase.TableName;
    import org.apache.hadoop.hbase.client.Admin;
    import org.apache.hadoop.hbase.client.Connection;
    import org.apache.hadoop.hbase.client.ConnectionFactory;
    import org.apache.hadoop.hbase.client.Mutation;
    import org.apache.hadoop.hbase.client.Put;
    import org.apache.hadoop.hbase.client.Result;
    import org.apache.hadoop.hbase.client.Scan;
    import org.apache.hadoop.hbase.client.Table;
    import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
    import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
    import org.apache.hadoop.hbase.mapreduce.TableMapper;
    import org.apache.hadoop.hbase.mapreduce.TableReducer;
    import org.apache.hadoop.hbase.util.Bytes;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    
    public class HbaseWordCount {
        private final static String tableName = "word";// 表名1
        private final static String colf = "content";// 列族
        private final static String col = "info";//
        private final static String tableName2 = "stat";// 表名2
        private final static IntWritable one = new IntWritable(1);
        private final static Text word = new Text();
        private static Configuration config;
        private static Connection connection;
    
        static class MyMapper extends TableMapper<Text, IntWritable> {
    
            @Override
            protected void map(ImmutableBytesWritable key, Result value,
                    Mapper<ImmutableBytesWritable, Result, Text, IntWritable>.Context context)
                    throws IOException, InterruptedException {
                // 获取一行数据中的colf:col
                // 表里面只有一个列族,所以我就直接获取每一行的值
                String words = Bytes.toString(value.getValue(Bytes.toBytes(colf), Bytes.toBytes(col)));
                // 按空格分割
                String itr[] = words.toString().split(" ");
                for (int i = 0; i < itr.length; i++) {
                    word.set(itr[i]);
                    context.write(word, one);
                }
    
            }
    
        }
    
        static class MyReducer extends TableReducer<Text, IntWritable, ImmutableBytesWritable> {
            @Override
            protected void reduce(Text key, Iterable<IntWritable> values,
                    Reducer<Text, IntWritable, ImmutableBytesWritable, Mutation>.Context context)
                    throws IOException, InterruptedException {
    
                int sum = 0;
                for (IntWritable val : values) {
                    sum += val.get();
                }
                Put put = new Put(Bytes.toBytes(key.toString()));
                put.add(Bytes.toBytes(colf), Bytes.toBytes(col), Bytes.toBytes(String.valueOf(sum)));
                context.write(new ImmutableBytesWritable(Bytes.toBytes(key.toString())), put);
            }
    
        }
    
        // 初始化配置
        private static void init() throws IOException {
            config = HBaseConfiguration.create();
            // 配置zookeeper
            config.set("hbase.zookeeper.quorum", "hadoop2,hadoop3,hadoop4");
            config.set("hbase.zookeeper.property.clientPort", "2181");
            connection = ConnectionFactory.createConnection(config);
            CreateTable();
        }
    
        // 初始化hbase表
        private static void CreateTable() throws IOException {
    
            Admin admin = connection.getAdmin();
            // 删除表
            if (admin.tableExists(TableName.valueOf(tableName)) || admin.tableExists(TableName.valueOf(tableName2))) {
                System.out.println("table is already exists!");
                admin.disableTable(TableName.valueOf(tableName));
                admin.deleteTable(TableName.valueOf(tableName));
                admin.disableTable(TableName.valueOf(tableName2));
                admin.deleteTable(TableName.valueOf(tableName2));
    
            }
            // 创建表
            HTableDescriptor desc = new HTableDescriptor(TableName.valueOf(tableName));
            HColumnDescriptor family = new HColumnDescriptor(colf);
            desc.addFamily(family);
            admin.createTable(desc);
    
            HTableDescriptor desc2 = new HTableDescriptor(TableName.valueOf(tableName2));
            HColumnDescriptor family2 = new HColumnDescriptor(colf);
            desc2.addFamily(family2);
            admin.createTable(desc2);
            // 插入数据
            Table table = connection.getTable(TableName.valueOf(tableName));
    
            table.setAutoFlushTo(false);
            table.setWriteBufferSize(5);
            List<Put> lp = new ArrayList<Put>();
            Put p1 = new Put(Bytes.toBytes("1"));
            p1.add(colf.getBytes(), col.getBytes(), ("The Apache Hadoop software library is a framework").getBytes());
            lp.add(p1);
    
            Put p2 = new Put(Bytes.toBytes("2"));
            p2.add(colf.getBytes(), col.getBytes(),
                    ("The common utilities that support the other Hadoop modules").getBytes());
            lp.add(p2);
    
            Put p3 = new Put(Bytes.toBytes("3"));
            p3.add(colf.getBytes(), col.getBytes(), ("Hadoop by reading the documentation").getBytes());
            lp.add(p3);
    
            Put p4 = new Put(Bytes.toBytes("4"));
            p4.add(colf.getBytes(), col.getBytes(), ("Hadoop from the release page").getBytes());
            lp.add(p4);
    
            Put p5 = new Put(Bytes.toBytes("5"));
            p5.add(colf.getBytes(), col.getBytes(), ("Hadoop on the mailing list").getBytes());
            lp.add(p5);
    
            table.put(lp);
            table.flushCommits();
            lp.clear();
        }
    
        public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
            init();
            Job job = Job.getInstance(config);
            job.setJarByClass(HbaseWordCount.class);
            Scan scan = new Scan();
            scan.addColumn(Bytes.toBytes(colf), Bytes.toBytes(col));
            //创建读取hbase数据的mapper,指定表名,scan,mapper类,输出的key和value
            TableMapReduceUtil.initTableMapperJob(tableName, scan, MyMapper.class, Text.class, IntWritable.class, job);
            // 创建写入hbase的reducer,指定表名、reducer类、job
            TableMapReduceUtil.initTableReducerJob(tableName2, MyReducer.class, job);
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    }

    实例代码流程说明:

      1、在init()中首先会初始化Hbase的相关配置,主要配置zookeeper集群地址,zookeeper的端口号。

      2、创建hbase word和 stat表,并向word表中添加数据。

      3、然后执行mapreduce程序,从word表中读取数据,经过处理好,保存进stat表。注意执行mapreduce代码的时候,必须先创建好word表和stat表。

  • 相关阅读:
    sqlISNULL函数(转载)
    sql数据导入导出(转载)
    sqlbcp
    SQL连接方式(左连接、右连接、全连接)转载
    陶哲轩实分析 习题 7.2.6 (嵌套级数)
    陶哲轩实分析 命题7.2.5 证明
    陶哲轩实分析 定义 7.2.1(形式无限级数) 的一点注记
    陶哲轩实分析 推论 7.3.2 (比较判别法) 证明
    陶哲轩实分析 习题 7.2.6 (嵌套级数)
    陶哲轩实分析 命题 7.2.14 (极限算律) 证明
  • 原文地址:https://www.cnblogs.com/zhaobingqing/p/8269055.html
Copyright © 2020-2023  润新知