设 $f:bR obR$ 二阶可微, 且 $$ex f(0)=2,quad f'(0)=-2,quad f(1)=1. eex$$ 试证: $$ex exists xiin (0,1),st f(xi)cdot f'(xi)+f''(xi)=0. eex$$
设 $f:bR obR$ 二阶可微, 且 $$ex f(0)=2,quad f'(0)=-2,quad f(1)=1. eex$$ 试证: $$ex exists xiin (0,1),st f(xi)cdot f'(xi)+f''(xi)=0. eex$$