• 自定义异步爬虫架构


    作者:张亚飞 

    山西医科大学在读研究生

    1. 并发编程

        Python中实现并发编程的三种方案:多线程、多进程和异步I/O。并发编程的好处在于可以提升程序的执行效率以及改善用户体验;坏处在于并发的程序不容易开发和调试,同时对其他程序来说它并不友好。

    • 多线程:Python中提供了Thread类并辅以Lock、Condition、Event、Semaphore和Barrier。Python中有GIL来防止多个线程同时执行本地字节码,这个锁对于CPython是必须的,因为CPython的内存管理并不是线程安全的,因为GIL的存在多线程并不能发挥CPU的多核特性。
    • 多进程:多进程可以有效的解决GIL的问题,实现多进程主要的类是Process,其他辅助的类跟threading模块中的类似,进程间共享数据可以使用管道、套接字等,在multiprocessing模块中有一个Queue类,它基于管道和锁机制提供了多个进程共享的队列。下面是官方文档上关于多进程和进程池的一个示例。
    • 异步处理:从调度程序的任务队列中挑选任务,该调度程序以交叉的形式执行这些任务,我们并不能保证任务将以某种顺序去执行,因为执行顺序取决于队列中的一项任务是否愿意将CPU处理时间让位给另一项任务。异步任务通常通过多任务协作处理的方式来实现,由于执行时间和顺序的不确定,因此需要通过回调式编程或者future对象来获取任务执行的结果。Python 3通过asyncio模块和awaitasync关键字(在Python 3.7中正式被列为关键字)来支持异步处理。

    Python中有一个名为aiohttp的三方库,它提供了异步的HTTP客户端和服务器,这个三方库可以跟asyncio模块一起工作,并提供了对Future对象的支持。Python 3.6中引入了async和await来定义异步执行的函数以及创建异步上下文,在Python 3.7中它们正式成为了关键字。下面的代码异步的从5个URL中获取页面并通过正则表达式的命名捕获组提取了网站的标题。

    # -*- coding: utf-8 -*-

    """
    Datetime: 2019/6/13
    Author: Zhang Yafei
    Description: async + await + aiiohttp 异步编程示例
    """

    import asyncio
    import re

    import aiohttp

    PATTERN = re.compile(r'<title>(?P<title>.*)</title>')


    async def fetch_page(session, url):
        async with session.get(url, ssl=Falseas resp:
            return await resp.text()


    async def show_title(url):
        async with aiohttp.ClientSession() as session:
            html = await fetch_page(session, url)
            print(PATTERN.search(html).group('title'))


    def main():
        urls = ('https://www.python.org/',
                'https://git-scm.com/',
                'https://www.jd.com/',
                'https://www.taobao.com/',
                'https://www.douban.com/')
        loop = asyncio.get_event_loop()
        tasks = [show_title(url) for url in urls]
        loop.run_until_complete(asyncio.wait(tasks))
        loop.close()


    if __name__ == '__main__':
        main()

     

    当程序不需要真正的并发性或并行性,而是更多的依赖于异步处理和回调时,asyncio就是一种很好的选择。如果程序中有大量的等待与休眠时,也应该考虑asyncio,它很适合编写没有实时数据处理需求的Web应用服务器。

    2. 自定义异步爬虫架构 - AsyncSpider

    • 目录结构

    目录结构
    • manage.py: 项目启动文件
    • engine.py: 项目引擎
    • settings.py: 项目参数设置
    • spiders文件夹: spider爬虫编写
    • settings设置
    import os

    DIR_PATH = os.path.abspath(os.path.dirname(__file__))

    # 爬虫项目模块类路径
    Spider_Name = 'spiders.xiaohua.XiaohuaSpider'

    # 全局headers
    headers = {'User-Agent''Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36'}

    TO_FILE = 'xiaohua.csv'

    # 若要保存图片,设置文件夹
    IMAGE_DIR = 'images'

    if not os.path.exists(IMAGE_DIR):
        os.mkdir(IMAGE_DIR)
    • spider编写
    • 结构
      spider编写
    • 编写爬取xiaohua网示例
    # -*- coding: utf-8 -*-

    """
    Datetime: 2019/6/11
    Author: Zhang Yafei
    Description: 爬虫Spider
    """

    import os
    import re
    from urllib.parse import urljoin

    from engine import Request
    from settings import TO_FILE
    import pandas as pd


    class XiaohuaSpider(object):
        """ 自定义Spider类 """
        # 1. 自定义起始url列表
        start_urls = [f'http://www.xiaohuar.com/list-1-{i}.html' for i in range(4)]

        def filter_downloaded_urls(self):
            """ 2. 添加过滤规则 """
            # self.start_urls = self.start_urls
            pass

        def start_request(self):
            """ 3. 将请求加入请求队列(集合),发送请求 """
            for url in self.start_urls:
                yield Request(url=url, callback=self.parse)

        async def parse(self, response):
            """ 4. 拿到请求响应,进行数据解析 """
            html = await response.text(encoding='gbk')
            reg = re.compile('<img width="210".*alt="(.*?)".*src="(.*?)" />')
            results = re.findall(reg, html)
            item_list = []
            request_list = []
            for name, src in results:
                img_url = src if src.startswith('http'else urljoin('http://www.xiaohuar.com', src)
                item_list.append({'name': name, 'img_url': img_url})
                request_list.append(Request(url=img_url, callback=self.download_img, meta={'name': name}))
            # 4.1 进行数据存储
            await self.store_data(data=item_list, url=response.url)
            # 4.2 返回请求和回调函数
            return request_list

        @staticmethod
        async def store_data(data, url):
            """ 5. 数据存储 """
            df = pd.DataFrame(data=data)
            if os.path.exists(TO_FILE):
                df.to_csv(TO_FILE, index=False, mode='a', header=False, encoding='utf_8_sig')
            else:
                df.to_csv(TO_FILE, index=False, encoding='utf_8_sig')
            print(f'{url} 数据下载完成')

        @staticmethod
        async def download_img(response):
            """ 二层深度下载 """
            name = response.request.meta.get('name')
            with open(f'images/{name}.jpg', mode='wb'as f:
                f.write(await response.read())
            print(f'{name} 下载成功')
    • 运行

    cd AsyncSpider
    python manage.py


    • 运行结果

    • 下载图片


    • 生成文件

    gitee传送门:https://gitee.com/zhangyafeii/AsyncSpider

  • 相关阅读:
    "无法在证书存储区中找到清单签名证书"的解决办法
    ASP.net从服务器端向客户端弹出alert对话框,但不使页面变成白板
    C#日期相关操作
    在Lucene.net实现自定义排序
    做技术二十多年 突然明白的道理
    .net中sql防止注入式攻击
    开发可统计单词个数的Android驱动程序(1)
    乐博Android客户端(新浪微博)1.01发布,欢迎各位童鞋试用
    百度面试题:求绝对值最小的数
    赶紧升级到Android 2.3.4,体验最新的Android技术
  • 原文地址:https://www.cnblogs.com/zhangyafei/p/11017705.html
Copyright © 2020-2023  润新知