• 文本分类(三):使用Pytorch进行文本分类——Transformer


    一、前言

    文本分类不是生成式的任务,因此只使用Transformer的编码部分(Encoder)进行特征提取。如果不熟悉Transformer模型的原理请移步

    二、架构图

     三、代码

    1、自注意力模型

    class TextSlfAttnNet(nn.Module):
        ''' 自注意力模型 '''
    
        def __init__(self,
                     config: TextSlfAttnConfig,
                     char_size=5000,
                     pinyin_size=5000):
            super(TextSlfAttnNet, self).__init__()
            # 字向量
            self.char_embedding = nn.Embedding(char_size, config.embedding_size)
            # 拼音向量
            self.pinyin_embedding = nn.Embedding(pinyin_size, config.embedding_size)
            # 位置向量
            self.pos_embedding = nn.Embedding.from_pretrained(
                get_sinusoid_encoding_table(config.max_sen_len, config.embedding_size, padding_idx=0),
                freeze=True)
    
            self.layer_stack = nn.ModuleList([
                EncoderLayer(config.embedding_size, config.hidden_dims, config.n_heads, config.k_dims, config.v_dims, dropout=config.keep_dropout)
                for _ in range(config.hidden_layers)
            ])
    
            self.fc_out = nn.Sequential(
                nn.Dropout(config.keep_dropout),
                nn.Linear(config.embedding_size, config.hidden_dims),
                nn.ReLU(inplace=True),
                nn.Dropout(config.keep_dropout),
                nn.Linear(config.hidden_dims, config.num_classes),
    
            )
    
    
        def forward(self, char_id, pinyin_id, pos_id):
            char_inputs = self.char_embedding(char_id)
            pinyin_iputs = self.pinyin_embedding(pinyin_id)
    
            sen_inputs = torch.cat((char_inputs, pinyin_iputs), dim=1)
            # sentence_length = sen_inputs.size()[1]
            # pos_id = torch.LongTensor(np.array([i for i in range(sentence_length)]))
            pos_inputs = self.pos_embedding(pos_id)
            # batch_size * sen_len * embedding_size
            inputs = sen_inputs + pos_inputs
    
            for layer in self.layer_stack:
                inputs, _ = layer(inputs)
    
            enc_outs = inputs.permute(0, 2, 1)
            enc_outs = torch.sum(enc_outs, dim=-1)
            return self.fc_out(enc_outs)

    2、编码层

    class EncoderLayer(nn.Module):
        '''编码层'''
    
        def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
            '''
    
            :param d_model: 模型输入维度
            :param d_inner: 前馈神经网络隐层维度
            :param n_head:  多头注意力
            :param d_k:     键向量
            :param d_v:     值向量
            :param dropout:
            '''
            super(EncoderLayer, self).__init__()
            self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
            self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)
    
        def forward(self, enc_input, non_pad_mask=None, slf_attn_mask=None):
            '''
    
            :param enc_input:
            :param non_pad_mask:
            :param slf_attn_mask:
            :return:
            '''
            enc_output, enc_slf_attn = self.slf_attn(enc_input, enc_input, enc_input, mask=slf_attn_mask)
            if non_pad_mask is not None:
                enc_output *= non_pad_mask
    
            enc_output = self.pos_ffn(enc_output)
            if non_pad_mask is not None:
                enc_output *= non_pad_mask
            return enc_output, enc_slf_attn

    3、多头注意力

    class MultiHeadAttention(nn.Module):
        '''
            “多头”注意力模型
        '''
    
        def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
            '''
    
            :param n_head: “头”数
            :param d_model: 输入维度
            :param d_k: 键向量维度
            :param d_v: 值向量维度
            :param dropout:
            '''
            super(MultiHeadAttention, self).__init__()
    
            self.n_head = n_head
            self.d_k = d_k
            self.d_v = d_v
            # 产生 查询向量q,键向量k, 值向量v
            self.w_qs = nn.Linear(d_model, n_head * d_k)
            self.w_ks = nn.Linear(d_model, n_head * d_k)
            self.w_vs = nn.Linear(d_model, n_head * d_v)
    
            nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
            nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
            nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))
    
            self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
            self.layer_normal = nn.LayerNorm(d_model)
    
            self.fc = nn.Linear(n_head * d_v, d_model)
            nn.init.xavier_normal_(self.fc.weight)
    
            self.dropout = nn.Dropout(dropout)
    
        def forward(self, q, k, v, mask=None):
            '''
            计算多头注意力
            :param q: 用于产生  查询向量
            :param k: 用于产生  键向量
            :param v:  用于产生 值向量
            :param mask:
            :return:
            '''
            d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
    
            sz_b, len_q, _ = q.size()
            sz_b, len_k, _ = k.size()
            sz_b, len_v, _ = v.size()
    
            residual = q
    
            q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
            k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
            v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
    
            # (n*b) x lq x dk
            q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k)
            # (n*b) x lk x dk
            k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k)
            # (n*b) x lv x dv
            v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v)
    
            # mask = mask.repeat(n_head, 1, 1)  # (n*b) x .. x ..
            #
            output, attn = self.attention(q, k, v, mask=None)
            # (n_heads * batch_size) * lq * dv
            output = output.view(n_head, sz_b, len_q, d_v)
            # batch_size * len_q * (n_heads * dv)
            output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1)
            output = self.dropout(self.fc(output))
            output = self.layer_normal(output + residual)
            return output, attn

    4、前馈神经网络

    class PositionwiseFeedForward(nn.Module):
        '''
            前馈神经网络
        '''
    
        def __init__(self, d_in, d_hid, dropout=0.1):
            '''
    
            :param d_in:    输入维度
            :param d_hid:   隐藏层维度
            :param dropout:
            '''
            super(PositionwiseFeedForward, self).__init__()
            self.w_1 = nn.Conv1d(d_in, d_hid, 1)
            self.w_2 = nn.Conv1d(d_hid, d_in, 1)
            self.layer_normal = nn.LayerNorm(d_in)
            self.dropout = nn.Dropout(dropout)
    
        def forward(self, x):
            residual = x
            output = x.transpose(1, 2)
            output = self.w_2(F.relu(self.w_1(output)))
            output = output.transpose(1, 2)
            output = self.dropout(output)
            output = self.layer_normal(output + residual)
            return output

    5、位置函数

    def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
        '''
        计算位置向量
        :param n_position:      位置的最大值
        :param d_hid:           位置向量的维度,和字向量维度相同(要相加求和)
        :param padding_idx: 
        :return: 
        '''
    
        def cal_angle(position, hid_idx):
            return position / np.power(10000, 2 * (hid_idx // 2) / d_hid)
    
        def get_posi_angle_vec(position):
            return [cal_angle(position, hid_j) for hid_j in range(d_hid)]
    
        sinusoid_table = np.array([get_posi_angle_vec(pos_i) for pos_i in range(n_position)])
    
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1
    
        if padding_idx is not None:
            # zero vector for padding dimension
            sinusoid_table[padding_idx] = 0.
    
        return torch.FloatTensor(sinusoid_table)

    四、经验值

    在分类任务中,与BILSTM+ATTENTION(链接)相比:
    
    模型比LSTM大很多,同样的任务LSTM模型6M左右,Transformer模型55M;
    收敛速度比较慢;
    超参比较多,不易调参,但同时也意味着弹性比较大;
    效果和BILSTM模型差不多;
  • 相关阅读:
    Acwing 284.金字塔 (区间DP)
    Acwing 283.多边形 (区间DP)
    Acwing 277.饼干 (DP+排序不等式)
    Acwing 274.移动服务 (DP)
    Acwing 273.分级 (DP)
    Acwing 271.杨老师的照相排序 (DP)
    Acwing 272.最长公共上升子序列 (DP)
    Mybatis-缓存
    mybatis与spring整合
    mybatis-sql映射文件
  • 原文地址:https://www.cnblogs.com/zhangxianrong/p/15118112.html
Copyright © 2020-2023  润新知