• Spark Standalone Mode 多机启动 -- 分布式计算系统spark学习(二)(更新一键启动slavers)


    捣鼓了一下,先来个手动挡吧。自动挡要设置ssh无密码登陆啥的,后面开搞。

    一、手动多台机链接master

    手动链接master其实上篇已经用过。

    这里有两台机器:

    10.60.215.41 启动master、worker1、application(spark shell)

    10.0.2.15 启动worker2

    具体步骤如下:

    1.在10.60.215.41 上

    $SPARK_HOME $ ./sbin/start-master.sh 
    $SPARK_HOME $./bin/spark-class org.apache.spark.deploy.worker.Worker spark://qpzhangdeMac-mini.local:7077

    2.在10.0.2.15上

    $SPARK_HOME $./bin/spark-class org.apache.spark.deploy.worker.Worker spark://qpzhangdeMac-mini.local:7077

    这里需要注意的是,貌似spark用了akka的库,spark的master URL里面必须要用hostname(尝试从配置文件里面改成IP,也没生效),否则会报错:

    15/03/20 17:14:05 ERROR EndpointWriter: dropping message [class akka.actor.ActorSelectionMessage] for non-local recipient [Actor[akka.tcp://sparkMaster@10.60.215.41:7077/]] arriving at [akka.tcp://sparkMaster@10.60.215.41:7077] inbound addresses are [akka.tcp://sparkMaster@qpzhangdeMac-mini.local:7077]

    要在10.0.2.15机器的hosts里面,设置qpzhangdeMac-mini.local对应的IP为master 10.60.215.41,否则无法转换成IP进行链接。

    开始以为把master kill之后,master会自动转为worker1 或者 work2中的一个,但是并没有。worker只是不断尝试重连。

    15/03/20 17:41:05 INFO Worker: Retrying connection to master (attempt # 2)
    15/03/20 17:41:05 WARN EndpointWriter: AssociationError [akka.tcp://sparkWorker@10.60.215.41:53899] -> [akka.tcp://sparkMaster@qpzhangdeMac-mini.local:7077]: Error [Invalid address: akka.tcp://sparkMaster@qpzhangdeMac-mini.local:7077] [
    akka.remote.InvalidAssociation: Invalid address: akka.tcp://sparkMaster@qpzhangdeMac-mini.local:7077
    Caused by: akka.remote.transport.Transport$InvalidAssociationException: Connection refused: qpzhangdeMac-mini.local/10.60.215.41:7077

    重新启动master之后, 重连成功。

    15/03/20 18:27:41 INFO Worker: Retrying connection to master (attempt # 10)
    15/03/20 18:27:41 INFO Worker: Successfully registered with master spark://qpzhangdeMac-mini.local:7077

    这里暂且留下几个疑问:

    1)原来salve只是workers 么?worker是不会升级为master的,这里没有选举之说。

    2)master挂了之后,重启,任务会丢失么?

    3)单个worker是否可以注册到多个master上?

    3.在10.60.215.41 上

    启动spark shell,下达任务。

    scala> val textFile = sc.textFile("/var/spark/README.md")
    15/03/20 17:55:41 INFO MemoryStore: ensureFreeSpace(73391) called with curMem=186365, maxMem=555755765
    15/03/20 17:55:41 INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 71.7 KB, free 529.8 MB)
    15/03/20 17:55:41 INFO MemoryStore: ensureFreeSpace(31262) called with curMem=259756, maxMem=555755765
    15/03/20 17:55:41 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 30.5 KB, free 529.7 MB)
    15/03/20 17:55:41 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on 10.60.215.41:53983 (size: 30.5 KB, free: 530.0 MB)
    15/03/20 17:55:41 INFO BlockManagerMaster: Updated info of block broadcast_2_piece0
    15/03/20 17:55:41 INFO SparkContext: Created broadcast 2 from textFile at <console>:21
    textFile: org.apache.spark.rdd.RDD[String] = /var/spark/README.md MapPartitionsRDD[3] at textFile at <console>:21
    
    scala> textFile.count()
    15/03/20 17:55:45 INFO FileInputFormat: Total input paths to process : 1
    15/03/20 17:55:45 INFO SparkContext: Starting job: count at <console>:24
    15/03/20 17:55:45 INFO DAGScheduler: Got job 1 (count at <console>:24) with 2 output partitions (allowLocal=false)
    15/03/20 17:55:45 INFO DAGScheduler: Final stage: Stage 1(count at <console>:24)
    15/03/20 17:55:45 INFO DAGScheduler: Parents of final stage: List()
    15/03/20 17:55:45 INFO DAGScheduler: Missing parents: List()
    15/03/20 17:55:45 INFO DAGScheduler: Submitting Stage 1 (/var/spark/README.md MapPartitionsRDD[3] at textFile at <console>:21), which has no missing parents
    15/03/20 17:55:45 INFO MemoryStore: ensureFreeSpace(2640) called with curMem=291018, maxMem=555755765
    15/03/20 17:55:45 INFO MemoryStore: Block broadcast_3 stored as values in memory (estimated size 2.6 KB, free 529.7 MB)
    15/03/20 17:55:45 INFO MemoryStore: ensureFreeSpace(1931) called with curMem=293658, maxMem=555755765
    15/03/20 17:55:45 INFO MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 1931.0 B, free 529.7 MB)
    15/03/20 17:55:45 INFO BlockManagerInfo: Added broadcast_3_piece0 in memory on 10.60.215.41:53983 (size: 1931.0 B, free: 530.0 MB)
    15/03/20 17:55:45 INFO BlockManagerMaster: Updated info of block broadcast_3_piece0
    15/03/20 17:55:45 INFO SparkContext: Created broadcast 3 from broadcast at DAGScheduler.scala:839
    15/03/20 17:55:45 INFO DAGScheduler: Submitting 2 missing tasks from Stage 1 (/var/spark/README.md MapPartitionsRDD[3] at textFile at <console>:21)
    15/03/20 17:55:45 INFO TaskSchedulerImpl: Adding task set 1.0 with 2 tasks
    15/03/20 17:55:45 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 3, 10.60.215.41, PROCESS_LOCAL, 1289 bytes)
    15/03/20 17:55:45 INFO TaskSetManager: Starting task 1.0 in stage 1.0 (TID 4, 10.0.2.15, PROCESS_LOCAL, 1289 bytes)
    15/03/20 17:55:45 INFO BlockManagerInfo: Added broadcast_3_piece0 in memory on 10.60.215.41:53990 (size: 1931.0 B, free: 265.1 MB)
    15/03/20 17:55:45 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on 10.60.215.41:53990 (size: 30.5 KB, free: 265.1 MB)
    15/03/20 17:55:45 INFO BlockManagerInfo: Added broadcast_3_piece0 in memory on 10.0.2.15:53284 (size: 1931.0 B, free: 267.2 MB)
    15/03/20 17:55:45 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on 10.0.2.15:53284 (size: 30.5 KB, free: 267.2 MB)
    15/03/20 17:55:45 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 3) in 127 ms on 10.60.215.41 (1/2)
    15/03/20 17:55:46 INFO TaskSetManager: Finished task 1.0 in stage 1.0 (TID 4) in 470 ms on 10.0.2.15 (2/2)
    15/03/20 17:55:46 INFO DAGScheduler: Stage 1 (count at <console>:24) finished in 0.471 s
    15/03/20 17:55:46 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool 
    15/03/20 17:55:46 INFO DAGScheduler: Job 1 finished: count at <console>:24, took 0.487544 s
    res2: Long = 98
    
    scala> val linesWithSpark = textFile.filter(line => line.contains("Spark"))
    linesWithSpark: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[4] at filter at <console>:23
    
    scala> linesWithSpark.count()
    15/03/20 17:56:53 INFO SparkContext: Starting job: count at <console>:26
    15/03/20 17:56:53 INFO DAGScheduler: Got job 2 (count at <console>:26) with 2 output partitions (allowLocal=false)
    15/03/20 17:56:53 INFO DAGScheduler: Final stage: Stage 2(count at <console>:26)
    15/03/20 17:56:53 INFO DAGScheduler: Parents of final stage: List()
    15/03/20 17:56:53 INFO DAGScheduler: Missing parents: List()
    15/03/20 17:56:53 INFO DAGScheduler: Submitting Stage 2 (MapPartitionsRDD[4] at filter at <console>:23), which has no missing parents
    15/03/20 17:56:53 INFO MemoryStore: ensureFreeSpace(2848) called with curMem=295589, maxMem=555755765
    15/03/20 17:56:53 INFO MemoryStore: Block broadcast_4 stored as values in memory (estimated size 2.8 KB, free 529.7 MB)
    15/03/20 17:56:53 INFO MemoryStore: ensureFreeSpace(2034) called with curMem=298437, maxMem=555755765
    15/03/20 17:56:53 INFO MemoryStore: Block broadcast_4_piece0 stored as bytes in memory (estimated size 2034.0 B, free 529.7 MB)
    15/03/20 17:56:53 INFO BlockManagerInfo: Added broadcast_4_piece0 in memory on 10.60.215.41:53983 (size: 2034.0 B, free: 530.0 MB)
    15/03/20 17:56:53 INFO BlockManagerMaster: Updated info of block broadcast_4_piece0
    15/03/20 17:56:53 INFO SparkContext: Created broadcast 4 from broadcast at DAGScheduler.scala:839
    15/03/20 17:56:53 INFO DAGScheduler: Submitting 2 missing tasks from Stage 2 (MapPartitionsRDD[4] at filter at <console>:23)
    15/03/20 17:56:53 INFO TaskSchedulerImpl: Adding task set 2.0 with 2 tasks
    15/03/20 17:56:53 INFO TaskSetManager: Starting task 0.0 in stage 2.0 (TID 5, 10.0.2.15, PROCESS_LOCAL, 1289 bytes)
    15/03/20 17:56:53 INFO TaskSetManager: Starting task 1.0 in stage 2.0 (TID 6, 10.60.215.41, PROCESS_LOCAL, 1289 bytes)
    15/03/20 17:56:53 INFO BlockManagerInfo: Added broadcast_4_piece0 in memory on 10.60.215.41:53990 (size: 2034.0 B, free: 265.1 MB)
    15/03/20 17:56:53 INFO BlockManagerInfo: Added broadcast_4_piece0 in memory on 10.0.2.15:53284 (size: 2034.0 B, free: 267.2 MB)
    15/03/20 17:56:53 INFO TaskSetManager: Finished task 1.0 in stage 2.0 (TID 6) in 113 ms on 10.60.215.41 (1/2)
    15/03/20 17:56:53 INFO TaskSetManager: Finished task 0.0 in stage 2.0 (TID 5) in 122 ms on 10.0.2.15 (2/2)
    15/03/20 17:56:53 INFO DAGScheduler: Stage 2 (count at <console>:26) finished in 0.122 s
    15/03/20 17:56:53 INFO TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool 
    15/03/20 17:56:53 INFO DAGScheduler: Job 2 finished: count at <console>:26, took 0.137589 s
    res3: Long = 19

    从日志里面看到,任务都是分解成2个,分别发送到2个worker上面执行。

    这里不免想到以下问题:

    1)master的任务是怎么分配的?local file 是传递path到不同的worker上去,还是把内容读取了传递过去?

    2)如果仅仅是传递path过去,那么每个work都要读一遍文件?全部读取,还是移位读取的呢?

    多执行几次,然后看worker的日志,发现是传path,加上文件分片的;不同的分片应该是随机分到对应的worker的,因为几次命令,每个worker收到的分片地址不一样。

    这里还有一个问题,如果是从HDFS上面读取文件,一个地址是可以被不同机器的worker读取到的。如果是读本地local path的话,那么就呵呵了,你要自己把文件内容分派到不同的worker机器上去了。

    可在 http://10.60.215.41:4040/executors/ 上面可以看到当前执行task的 workers list,以及task被执行的状态。

    二,自动挡部署

    ==========

    其实原理也很简单,就是shell脚本,根据配置的slavers机器,通过ssh登录到slaver机器上面,切换到对应的目录,启动slave。

    相比手动启动slaver,这个一键启动只需要在一台master机器上完成。

    前提是,你必须配置好ssh的无密码登录,你可以参考这里

    配置好后,修改conf目录下的slavers列表:

    root@qp-zhang:/var/spark# cat conf/slaves
    # A Spark Worker will be started on each of the machines listed below.
    localhost
    root@qpzhangdeMac-mini.local

    采用对应的slavers脚本启动即可:

    root@qp-zhang:/var/spark# ./sbin/start-slaves.sh 
    root@qpzhangdeMac-mini.local: starting org.apache.spark.deploy.worker.Worker, logging to /private/var/spark/sbin/../logs/spark-root-org.apache.spark.deploy.worker.Worker-1-qpzhangdeMac-mini.local.out
    localhost: starting org.apache.spark.deploy.worker.Worker, logging to /var/spark/sbin/../logs/spark-root-org.apache.spark.deploy.worker.Worker-1-qp-zhang.out

    这时,可以通过

    http://localhost:8080/  查看当前master的slavers(也可以说是workers)。

    ===================================

    转载请注明出处:http://www.cnblogs.com/zhangqingping/p/4354383.html 

  • 相关阅读:
    flask 中的request
    悲观锁、乐观锁、行级锁、表级锁
    python标准库--functools.partial
    Django Model._meta API
    python中的urlencode与urldecode
    Django模版语言inclusion_tag的用法。
    Django的URL别名
    Django之模板语言
    django-request对象
    Java 基础
  • 原文地址:https://www.cnblogs.com/zhangqingping/p/4354383.html
Copyright © 2020-2023  润新知