• SVM推导帖子收藏


    SVM推导里看过的不错的两个帖子,还有就是《机器学习实战》中的SVM那一章的SMO的简单实现的python代码,学习SVM的可以看一看,比《统计学习》书里的部分,细节要详细些。也可以看看周志华老师的《机器学习》,svm那一章从margin到对偶求解,kkt条件,以及SMO,核函数,正则化惩罚这些都说的很透测。以后会更新一篇自己整理好的整个流程的帖子,估计是手写吧。

    '''
    Created on Nov 4, 2010
    Chapter 5 source file for Machine Learing in Action
    @author: Peter
    '''
    from numpy import *
    from time import sleep
    
    def loadDataSet(fileName):
        dataMat = []; labelMat = []
        fr = open(fileName)
        for line in fr.readlines():
            lineArr = line.strip().split('	')
            dataMat.append([float(lineArr[0]), float(lineArr[1])])
            labelMat.append(float(lineArr[2]))
        return dataMat,labelMat
    
    def selectJrand(i,m):
        j=i #we want to select any J not equal to i
        while (j==i):
            j = int(random.uniform(0,m))
        return j
    
    def clipAlpha(aj,H,L):
        if aj > H: 
            aj = H
        if L > aj:
            aj = L
        return aj
    
    def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
        dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
        b = 0; m,n = shape(dataMatrix)
        alphas = mat(zeros((m,1)))
        iter = 0
        while (iter < maxIter):
            alphaPairsChanged = 0
            for i in range(m):
                fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
                Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
                if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                    j = selectJrand(i,m)
                    fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                    Ej = fXj - float(labelMat[j])
                    alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                    if (labelMat[i] != labelMat[j]):
                        L = max(0, alphas[j] - alphas[i])
                        H = min(C, C + alphas[j] - alphas[i])
                    else:
                        L = max(0, alphas[j] + alphas[i] - C)
                        H = min(C, alphas[j] + alphas[i])
                    if L==H: print "L==H"; continue
                    eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                    if eta >= 0: print "eta>=0"; continue
                    alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                    alphas[j] = clipAlpha(alphas[j],H,L)
                    if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue
                    alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
                                                                            #the update is in the oppostie direction
                    b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                    b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                    if (0 < alphas[i]) and (C > alphas[i]): b = b1
                    elif (0 < alphas[j]) and (C > alphas[j]): b = b2
                    else: b = (b1 + b2)/2.0
                    alphaPairsChanged += 1
                    print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
            if (alphaPairsChanged == 0): iter += 1
            else: iter = 0
            print "iteration number: %d" % iter
        return b,alphas
    
    def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
        m,n = shape(X)
        K = mat(zeros((m,1)))
        if kTup[0]=='lin': K = X * A.T   #linear kernel
        elif kTup[0]=='rbf':
            for j in range(m):
                deltaRow = X[j,:] - A
                K[j] = deltaRow*deltaRow.T
            K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
        else: raise NameError('Houston We Have a Problem -- 
        That Kernel is not recognized')
        return K
    
    class optStruct:
        def __init__(self,dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters 
            self.X = dataMatIn
            self.labelMat = classLabels
            self.C = C
            self.tol = toler
            self.m = shape(dataMatIn)[0]
            self.alphas = mat(zeros((self.m,1)))
            self.b = 0
            self.eCache = mat(zeros((self.m,2))) #first column is valid flag
            self.K = mat(zeros((self.m,self.m)))
            for i in range(self.m):
                self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
    
    def calcEk(oS, k):
        fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
        Ek = fXk - float(oS.labelMat[k])
        return Ek
    
    def selectJ(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej
        maxK = -1; maxDeltaE = 0; Ej = 0
        oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
        validEcacheList = nonzero(oS.eCache[:,0].A)[0]
        if (len(validEcacheList)) > 1:
            for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E
                if k == i: continue #don't calc for i, waste of time
                Ek = calcEk(oS, k)
                deltaE = abs(Ei - Ek)
                if (deltaE > maxDeltaE):
                    maxK = k; maxDeltaE = deltaE; Ej = Ek
            return maxK, Ej
        else:   #in this case (first time around) we don't have any valid eCache values
            j = selectJrand(i, oS.m)
            Ej = calcEk(oS, j)
        return j, Ej
    
    def updateEk(oS, k):#after any alpha has changed update the new value in the cache
        Ek = calcEk(oS, k)
        oS.eCache[k] = [1,Ek]
    
    def innerL(i, oS):
        Ei = calcEk(oS, i)
        if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
            j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
            alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
            if (oS.labelMat[i] != oS.labelMat[j]):
                L = max(0, oS.alphas[j] - oS.alphas[i])
                H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
            else:
                L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
                H = min(oS.C, oS.alphas[j] + oS.alphas[i])
            if L==H: print "L==H"; return 0
            eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
            if eta >= 0: print "eta>=0"; return 0
            oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
            oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
            updateEk(oS, j) #added this for the Ecache
            if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
            oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
            updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
            b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
            b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
            if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
            elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
            else: oS.b = (b1 + b2)/2.0
            return 1
        else: return 0
    
    def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):    #full Platt SMO
        oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
        iter = 0
        entireSet = True; alphaPairsChanged = 0
        while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
            alphaPairsChanged = 0
            if entireSet:   #go over all
                for i in range(oS.m):        
                    alphaPairsChanged += innerL(i,oS)
                    print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
                iter += 1
            else:#go over non-bound (railed) alphas
                nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
                for i in nonBoundIs:
                    alphaPairsChanged += innerL(i,oS)
                    print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
                iter += 1
            if entireSet: entireSet = False #toggle entire set loop
            elif (alphaPairsChanged == 0): entireSet = True  
            print "iteration number: %d" % iter
        return oS.b,oS.alphas
    
    def calcWs(alphas,dataArr,classLabels):
        X = mat(dataArr); labelMat = mat(classLabels).transpose()
        m,n = shape(X)
        w = zeros((n,1))
        for i in range(m):
            w += multiply(alphas[i]*labelMat[i],X[i,:].T)
        return w
    
    def testRbf(k1=1.3):
        dataArr,labelArr = loadDataSet('testSetRBF.txt')
        b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        svInd=nonzero(alphas.A>0)[0]
        sVs=datMat[svInd] #get matrix of only support vectors
        labelSV = labelMat[svInd];
        print "there are %d Support Vectors" % shape(sVs)[0]
        m,n = shape(datMat)
        errorCount = 0
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1
        print "the training error rate is: %f" % (float(errorCount)/m)
        dataArr,labelArr = loadDataSet('testSetRBF2.txt')
        errorCount = 0
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        m,n = shape(datMat)
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1    
        print "the test error rate is: %f" % (float(errorCount)/m)    
    
    def img2vector(filename):
        returnVect = zeros((1,1024))
        fr = open(filename)
        for i in range(32):
            lineStr = fr.readline()
            for j in range(32):
                returnVect[0,32*i+j] = int(lineStr[j])
        return returnVect
    
    def loadImages(dirName):
        from os import listdir
        hwLabels = []
        trainingFileList = listdir(dirName)           #load the training set
        m = len(trainingFileList)
        trainingMat = zeros((m,1024))
        for i in range(m):
            fileNameStr = trainingFileList[i]
            fileStr = fileNameStr.split('.')[0]     #take off .txt
            classNumStr = int(fileStr.split('_')[0])
            if classNumStr == 9: hwLabels.append(-1)
            else: hwLabels.append(1)
            trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
        return trainingMat, hwLabels    
    
    def testDigits(kTup=('rbf', 10)):
        dataArr,labelArr = loadImages('trainingDigits')
        b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        svInd=nonzero(alphas.A>0)[0]
        sVs=datMat[svInd] 
        labelSV = labelMat[svInd];
        print "there are %d Support Vectors" % shape(sVs)[0]
        m,n = shape(datMat)
        errorCount = 0
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1
        print "the training error rate is: %f" % (float(errorCount)/m)
        dataArr,labelArr = loadImages('testDigits')
        errorCount = 0
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        m,n = shape(datMat)
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1    
        print "the test error rate is: %f" % (float(errorCount)/m) 
    
    
    '''#######********************************
    Non-Kernel VErsions below
    '''#######********************************
    
    class optStructK:
        def __init__(self,dataMatIn, classLabels, C, toler):  # Initialize the structure with the parameters 
            self.X = dataMatIn
            self.labelMat = classLabels
            self.C = C
            self.tol = toler
            self.m = shape(dataMatIn)[0]
            self.alphas = mat(zeros((self.m,1)))
            self.b = 0
            self.eCache = mat(zeros((self.m,2))) #first column is valid flag
    
    def calcEkK(oS, k):
        fXk = float(multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b
        Ek = fXk - float(oS.labelMat[k])
        return Ek
    
    def selectJK(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej
        maxK = -1; maxDeltaE = 0; Ej = 0
        oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
        validEcacheList = nonzero(oS.eCache[:,0].A)[0]
        if (len(validEcacheList)) > 1:
            for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E
                if k == i: continue #don't calc for i, waste of time
                Ek = calcEk(oS, k)
                deltaE = abs(Ei - Ek)
                if (deltaE > maxDeltaE):
                    maxK = k; maxDeltaE = deltaE; Ej = Ek
            return maxK, Ej
        else:   #in this case (first time around) we don't have any valid eCache values
            j = selectJrand(i, oS.m)
            Ej = calcEk(oS, j)
        return j, Ej
    
    def updateEkK(oS, k):#after any alpha has changed update the new value in the cache
        Ek = calcEk(oS, k)
        oS.eCache[k] = [1,Ek]
    
    def innerLK(i, oS):
        Ei = calcEk(oS, i)
        if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
            j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
            alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
            if (oS.labelMat[i] != oS.labelMat[j]):
                L = max(0, oS.alphas[j] - oS.alphas[i])
                H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
            else:
                L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
                H = min(oS.C, oS.alphas[j] + oS.alphas[i])
            if L==H: print "L==H"; return 0
            eta = 2.0 * oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T
            if eta >= 0: print "eta>=0"; return 0
            oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
            oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
            updateEk(oS, j) #added this for the Ecache
            if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0
            oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
            updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
            b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
            b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
            if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
            elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
            else: oS.b = (b1 + b2)/2.0
            return 1
        else: return 0
    
    def smoPK(dataMatIn, classLabels, C, toler, maxIter):    #full Platt SMO
        oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)
        iter = 0
        entireSet = True; alphaPairsChanged = 0
        while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
            alphaPairsChanged = 0
            if entireSet:   #go over all
                for i in range(oS.m):        
                    alphaPairsChanged += innerL(i,oS)
                    print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
                iter += 1
            else:#go over non-bound (railed) alphas
                nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
                for i in nonBoundIs:
                    alphaPairsChanged += innerL(i,oS)
                    print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)
                iter += 1
            if entireSet: entireSet = False #toggle entire set loop
            elif (alphaPairsChanged == 0): entireSet = True  
            print "iteration number: %d" % iter
        return oS.b,oS.alphas
    
    if __name__ == '__main__':
    
        j=selectJrand(1,10)
        print j
        dataArr,labelArr=loadDataSet('testSet.txt')
        b,alphas=smoSimple(dataArr,labelArr,0.6,0.001,40)
        print b
        print alphas[alphas>0]
    

    http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html

    http://blog.sina.com.cn/s/blog_4298002e010144k8.html
    http://blog.csdn.net/xuanyuansen/article/details/41078461

  • 相关阅读:
    转载 | python inferface使用
    gasshopper之python电池输出dict结构
    Tensorflow 2.0 搭建神经网络(局部)
    grasshopper之python电池执行逻辑
    springboot中给属性文件内容加密(application.properties,application.yml)
    使用docker安装rabbitmq
    关于宝塔Linux面板
    winsw来设置window自启服务
    docker的使用,Nginx,Tomcat,Portainer可视化
    内网穿透(windows)
  • 原文地址:https://www.cnblogs.com/zhangdebin/p/5567905.html
Copyright © 2020-2023  润新知