• Magic boy Bi Luo with his excited tree (树形dp)


    Bi Luo is a magic boy, he also has a migic tree, the tree has NN nodes , in each node , there is a treasure, it's value is V[i]V[i], and for each edge, there is a cost C[i]C[i], which means every time you pass the edge ii , you need to pay C[i]C[i]. 

    You may attention that every V[i]V[i] can be taken only once, but for some C[i]C[i] , you may cost severial times. 

    Now, Bi Luo define ans[i]ans[i] as the most value can Bi Luo gets if Bi Luo starts at node ii. 

    Bi Luo is also an excited boy, now he wants to know every ans[i]ans[i], can you help him?

    InputFirst line is a positive integer T(T104)T(T≤104) , represents there are TT test cases. 

    Four each test: 

    The first line contain an integer NN(N105)(N≤105). 

    The next line contains NN integers V[i]V[i], which means the treasure’s value of node i(1V[i]104)i(1≤V[i]≤104). 

    For the next N1N−1 lines, each contains three integers u,v,cu,v,c , which means node uuand node vv are connected by an edge, it's cost is c(1c104)c(1≤c≤104). 

    You can assume that the sum of NN will not exceed 106106.
    OutputFor the i-th test case , first output Case #i: in a single line , then output NNlines , for the i-th line , output ans[i]ans[i] in a single line.Sample Input

    1
    5
    4 1 7 7 7 
    1 2 6
    1 3 1
    2 4 8
    3 5 2

    Sample Output

    Case #1:
    15
    10
    14
    9
    15

    SOLUTION:
    这算是一道比较难的dp了吧,
    很容易想到dp i 0/1 代表只考虑i的子树后回到,不会到根节点的最大价值,
    之后就要考虑此时的转移
    求出dp之后,最难的步骤就是dp数组在树上换根时候的变换,感觉网上的题解写的不错

    CODE:
    //
    //  Created by Running Photon
    //  Copyright (c) 2015 Running Photon. All rights reserved.
    //
    #include <algorithm>
    #include <cctype>
    #include <cmath>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <iomanip>
    #include <iostream>
    #include <map>
    #include <queue>
    #include <string>
    #include <sstream>
    #include <set>
    #include <vector>
    #include <stack>
    #define ALL(x) x.begin(), x.end()
    #define INS(x) inserter(x, x,begin())
    #define ll long long
    #define CLR(x) memset(x, 0, sizeof x)
    using namespace std;
    const int inf = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    const int maxn = 2e5 + 10;
    const int maxv = 1e5 + 10;
    const double eps = 1e-9;
    
    int pnt[maxn], nxt[maxn], val[maxv], head[maxv], cost[maxn], cnt;
    void add_edge(int u, int v, int value) {
        pnt[cnt] = v;
        cost[cnt] = value;
        nxt[cnt] = head[u];
        head[u] = cnt++;
    }
    int dp[2][maxv];
    void dfs1(int u, int fa) {
        dp[0][u] = val[u];
        dp[1][u] = val[u];
        for(int i = head[u]; ~i; i = nxt[i]) {
            int v = pnt[i];
            if(v == fa) continue;
            dfs1(v, u);
            if(dp[0][v] - cost[i] * 2 > 0) {
                dp[0][u] += dp[0][v] - cost[i] * 2;
            }
        }
        for(int i = head[u]; ~i; i = nxt[i]) {
            int v = pnt[i];
            if(v == fa) continue;
            if(dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]) >= dp[1][u]) {
                dp[1][u] = dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]);
            }
        }
    }
    void dfs2(int u, int fa, int Cost) {
        int dir = u, tmp;
        if(fa != -1 && dp[0][fa] - Cost * 2 > 0) {
            dp[0][u] += dp[0][fa] - Cost * 2;
        }
    
        tmp = dp[1][u] = dp[0][u];
    
        if(fa!=-1)
            for(int i=1;i<=1;i++) {
            int v = fa;
    
            if(dp[0][u] - max(0, dp[0][v] - Cost * 2) + (dp[1][v] - Cost) >= dp[1][u]) {
                dir = v;
                swap(tmp, dp[1][u]);
                dp[1][u] = dp[0][u] - max(0, dp[0][v] - Cost * 2) + (dp[1][v] - Cost);
            }
            else
                if(dp[0][u] - max(0, dp[0][v] - Cost * 2) + (dp[1][v] - Cost) >= tmp) {
                tmp = dp[0][u] - max(0, dp[0][v] - Cost * 2) + (dp[1][v] - Cost);
            }
        }
    
        for(int i = head[u]; ~i; i = nxt[i]) {
            int v = pnt[i];
    
            if(dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]) >= dp[1][u]) {
                dir = v;
                swap(tmp, dp[1][u]);
                dp[1][u] = dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]);
            }
            else if(dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]) >= tmp) {
                tmp = dp[0][u] - max(0, dp[0][v] - cost[i] * 2) + (dp[1][v] - cost[i]);
            }
        }
        // printf("dp[0][%d] = %d dp[1][%d] = %d  tmp = %d
    ", u, dp[0][u], u, dp[1][u], tmp);
    
        int L = dp[0][u], R = dp[1][u];
        for(int i = head[u]; ~i; i = nxt[i]) {
            int v = pnt[i];
            if(v == fa) continue;
            if(dp[0][v] - cost[i] * 2 > 0) {
                dp[0][u] = L - (dp[0][v] - cost[i] * 2);
            }
            if(dir == v) {
                dp[1][u] = tmp;
                if(dp[0][v] - cost[i] * 2 > 0) dp[1][u] -= (dp[0][v] - cost[i] * 2);
            }
            else if(dp[0][v] - cost[i] * 2 > 0) {
                dp[1][u] = R - (dp[0][v] - cost[i] * 2);
            }
            // printf("dir = %d
    ", dir);
            // printf("nxt%d = %d
    ", v, dp[1][u]);
            dfs2(v, u, cost[i]);
            dp[0][u] = L, dp[1][u] = R;
        }
    }
    int main() {
    
        int T;
        int cas = 0;
        scanf("%d", &T);
        while(T--) {
            int n;
            printf("Case #%d:
    ", ++cas);
            scanf("%d", &n);
            cnt = 0;
            memset(head, -1, sizeof (int) * (n + 1));
            for(int i = 1; i <= n; i++) scanf("%d", val + i);
            for(int i = 1; i < n; i++) {
                int u, v, value;
                scanf("%d%d%d", &u, &v, &value);
                add_edge(u, v, value);
                add_edge(v, u, value);
            }
            dfs1(1, -1);
            dfs2(1, -1, 0);
            for(int i = 1; i <= n; i++) {
                printf("%d
    ", max(dp[0][i], dp[1][i]));
            }
        }
    
        return 0;
    }
    
    
    

      












  • 相关阅读:
    运算符
    练习
    JAVA学习日报 9/23
    JAVA学习日报 8.22
    JAVA学习日报 8.21
    第一节:SpringMVC 处理请求数据【1】
    第六节:@RequestMapping 映射请求占位符 @PathVariable 注解
    第一节:REST 风格的URL地址约束
    第二节:REST风格的案例及源码分析
    (一)IOC 容器:【1】@Configuration&@Bean 给容器中注册组件
  • 原文地址:https://www.cnblogs.com/zhangbuang/p/11371836.html
Copyright © 2020-2023  润新知