Given a tree with n vertices, we want to add an edge between vertex 1 and vertex x, so that the sum of d(1, v) for all vertices v in the tree is minimized, where d(u, v) is the minimum number of edges needed to pass from vertex u to vertex v. Do you know which vertex x we should choose?
Recall that a tree is an undirected connected graph with n vertices and n - 1 edges.
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer n (1 ≤ n ≤ 2 × 105), indicating the number of vertices in the tree.
Each of the following n - 1 lines contains two integers u and v (1 ≤ u, v ≤ n), indicating that there is an edge between vertex u and v in the tree.
It is guaranteed that the given graph is a tree, and the sum of n over all test cases does not exceed 5 × 105. As the stack space of the online judge system is not very large, the maximum depth of the input tree is limited to about 3 × 104.
We kindly remind you that this problem contains large I/O file, so it's recommended to use a faster I/O method. For example, you can use scanf/printf instead of cin/cout in C++.
<h4< dd="">Output
For each test case, output a single integer indicating the minimum sum of d(1, v) for all vertices v in the tree (NOT the vertex x you choose).
<h4< dd="">Sample Input
2
6
1 2
2 3
3 4
3 5
3 6
3
1 2
2 3
<h4< dd="">Sample Output
8
2
<h4< dd="">Hint
For the first test case, if we choose x = 3, we will have
d(1, 1) + d(1, 2) + d(1, 3) + d(1, 4) + d(1, 5) + d(1, 6) = 0 + 1 + 1 + 2 + 2 + 2 = 8
It's easy to prove that this is the smallest sum we can achieve.
这题有人把它分在了树形dp里,感觉并不像是dp,有点从上到下递推的意思,
开始知道是从上往下推,但是就是想不出来是怎么推了,这就很蒟了,
其实就是考虑我把这个边往下移能带来什么后果,
比如从f 转移到了f的儿子son
son整个子树所经过的距离全都少了1
然后f和root中点 到 f 间所有的点的距离都增加了1
1 #include <bits/stdc++.h>
2
3 using namespace std;
4
5 #define rep(i, a, b) for (int i(a); i <= (b); ++i)
6 #define dec(i, a, b) for (int i(a); i >= (b); --i)
7
8 typedef long long LL;
9
10 const int N = 2e5 + 10;
11
12 int T, n;
13 int sz[N], deep[N];
14 int c[N];
15
16 LL f[N];
17 LL ans[N], all, ret;
18 vector <int> v[N];
19
20 void dfs(int x, int fa, int dep){
21 sz[x] = 1;
22 f[x] = 0;
23 deep[x] = dep;
24
25 for (int i=0;i<v[x].size();i++) {
26 int u=v[x][i];
27 if (u == fa) continue;
28 dfs(u, x, dep + 1);
29 sz[x] += sz[u];
30 f[x] += 0ll + f[u] + sz[u];
31 }
32 }
33
34 void solve(int x, int fa, int dep)
35 {
36 for (int i=0;i<v[x].size();i++)
37 {
38 int u=v[x][i];
39 if (u == fa) continue;
40 c[dep] = u;
41 if (deep[u] >= 2) ans[u] = ans[x] + sz[c[dep / 2 + 1]] - 2 * sz[u];
42 else ans[u] = ans[x];
43 solve(u, x, dep + 1);
44 }
45 }
46
47
48 int main(){
49
50 scanf("%d", &T);
51
52 while (T--){
53 scanf("%d", &n);
54 rep(i, 0, n + 1) v[i].clear();
55 rep(i, 2, n){
56 int x, y;
57 scanf("%d%d", &x, &y);
58 v[x].push_back(y);
59 v[y].push_back(x);
60 }
61
62 dfs(1, 0, 0);
63 ans[1] = f[1];
64 c[0] = 1;
65
66 solve(1, 0, 1);
67
68 ret = ans[1];
69
70 rep(i, 2, n) ret = min(ret, ans[i]);
71 printf("%lld
", ret);
72 }
73
74
75 return 0;
76 }