• B


    Given a tree with n vertices, we want to add an edge between vertex 1 and vertex x, so that the sum of d(1, v) for all vertices v in the tree is minimized, where d(uv) is the minimum number of edges needed to pass from vertex u to vertex v. Do you know which vertex x we should choose?

    Recall that a tree is an undirected connected graph with n vertices and n - 1 edges.

    Input

    There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

    The first line contains an integer n (1 ≤ n ≤ 2 × 105), indicating the number of vertices in the tree.

    Each of the following n - 1 lines contains two integers u and v (1 ≤ uv ≤ n), indicating that there is an edge between vertex u and v in the tree.

    It is guaranteed that the given graph is a tree, and the sum of n over all test cases does not exceed 5 × 105. As the stack space of the online judge system is not very large, the maximum depth of the input tree is limited to about 3 × 104.

    We kindly remind you that this problem contains large I/O file, so it's recommended to use a faster I/O method. For example, you can use scanf/printf instead of cin/cout in C++.

    <h4< dd="">Output

    For each test case, output a single integer indicating the minimum sum of d(1, v) for all vertices v in the tree (NOT the vertex x you choose).

    <h4< dd="">Sample Input

    2
    6
    1 2
    2 3
    3 4
    3 5
    3 6
    3
    1 2
    2 3
    

    <h4< dd="">Sample Output

    8
    2
    

    <h4< dd="">Hint

    For the first test case, if we choose x = 3, we will have

    d(1, 1) + d(1, 2) + d(1, 3) + d(1, 4) + d(1, 5) + d(1, 6) = 0 + 1 + 1 + 2 + 2 + 2 = 8

    It's easy to prove that this is the smallest sum we can achieve.







    这题有人把它分在了树形dp里,感觉并不像是dp,有点从上到下递推的意思,

    开始知道是从上往下推,但是就是想不出来是怎么推了,这就很蒟了,

    其实就是考虑我把这个边往下移能带来什么后果,

    比如从f 转移到了f的儿子son

    son整个子树所经过的距离全都少了1

    然后f和root中点 到 f 间所有的点的距离都增加了1





     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 #define rep(i, a, b)    for (int i(a); i <= (b); ++i)
     6 #define dec(i, a, b)    for (int i(a); i >= (b); --i)
     7 
     8 typedef long long LL;
     9 
    10 const int N = 2e5 + 10;
    11 
    12 int T, n;
    13 int sz[N], deep[N];
    14 int c[N];
    15 
    16 LL  f[N];
    17 LL  ans[N], all, ret;
    18 vector <int> v[N];
    19 
    20 void dfs(int x, int fa, int dep){
    21     sz[x]   = 1;
    22     f[x]    = 0;
    23     deep[x] = dep;
    24 
    25     for (int i=0;i<v[x].size();i++)  {
    26         int u=v[x][i];
    27         if (u == fa) continue;
    28         dfs(u, x, dep + 1);
    29         sz[x] += sz[u];
    30         f[x]  += 0ll + f[u] + sz[u];
    31     }
    32 }
    33 
    34 void solve(int x, int fa, int dep)
    35 {
    36       for (int i=0;i<v[x].size();i++) 
    37      {
    38         int u=v[x][i];
    39         if (u == fa) continue;
    40         c[dep] = u;
    41         if (deep[u] >= 2) ans[u] = ans[x] + sz[c[dep / 2 + 1]] - 2 * sz[u];
    42         else ans[u] = ans[x];
    43         solve(u, x, dep + 1);
    44     }
    45 }
    46         
    47 
    48 int main(){
    49 
    50     scanf("%d", &T);
    51 
    52     while (T--){
    53         scanf("%d", &n);
    54         rep(i, 0, n + 1) v[i].clear();
    55         rep(i, 2, n){
    56             int x, y;
    57             scanf("%d%d", &x, &y);
    58             v[x].push_back(y);
    59             v[y].push_back(x);
    60         }
    61 
    62         dfs(1, 0, 0);
    63         ans[1] = f[1];
    64         c[0] = 1;
    65 
    66         solve(1, 0, 1);
    67 
    68         ret = ans[1];
    69 
    70         rep(i, 2, n) ret = min(ret, ans[i]);
    71         printf("%lld
    ", ret);
    72     }
    73 
    74 
    75     return 0;
    76 }
  • 相关阅读:
    nuxt项目打包上线,以及nuxt项目基础代码分享
    SVG学习之stroke-dasharray 和 stroke-dashoffset 详解
    从零开始使用mocha测试
    小程序开发,视频播放和下载
    小程序开发中遇到的坑
    记录一次面试中的HTTP请求相关问题
    css3 min-content,max-content,fit-content, fill属性
    GC的 算法和种类
    JVM 的运行机制
    各种同步控制工具的使用
  • 原文地址:https://www.cnblogs.com/zhangbuang/p/10712314.html
Copyright © 2020-2023  润新知