题目大意:略。
解题思路:和poj 2778 DNA Sequence类似的做法。不同的是这道题目是要求小于长度L的,所以要多加一个维护总
和,做过矩阵高速幂的人肯定都会这个。
然后我们肯定是先算出不包括词根的。用总的减掉就是要求的答案,所以我又
加了两个用来维护总的,长度为i时,总的可能串有26i,累加。
题目要求取模264,直接用unsigned long long,注意
hdu输出long long型不能用printf。
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
typedef unsigned long long ll;
const int maxn = 50;
const int sigma_size = 26;
struct Mat {
int r, c;
ll s[maxn][maxn];
Mat(int r = 0, int c = 0) { init(r, c);}
void init(int r, int c) {
this->r = r;
this->c = c;
memset(s, 0, sizeof(s));
}
Mat operator * (const Mat& a) {
Mat ret(r, a.c);
for (int k = 0; k < c; k++) {
for (int i = 0; i < r; i++)
for (int j = 0; j < a.c; j++)
ret.s[i][j] += s[i][k] * a.s[k][j];
}
return ret;
}
};
struct Aho_Corasick {
int sz, g[maxn][sigma_size];
int tag[maxn], fail[maxn], last[maxn];
void init();
int idx(char ch);
void insert(char* str, int k);
void getFail();
void match(char* str);
void put(int x, int y);
Mat solve();
}A;
int N;
ll L;
void put (Mat x) {
for (int i = 0; i < x.r; i++) {
for (int j = 0; j < x.c; j++)
printf("%llu ", x.s[i][j]);
printf("
");
}
}
ll pow_mat (Mat x, ll n) {
Mat ret(x.r, 1);
ret.s[0][0] = ret.s[A.sz+1][0] = 1;
while (n) {
if (n&1)
ret = x * ret;
x = x * x;
n >>= 1;
}
int p = ret.r;
return ret.s[p-1][0] - ret.s[p-3][0];
}
int main () {
//while (scanf("%d%llu", &N, &L) == 2) {
while (cin >> N >> L) {
A.init();
char w[20];
for (int i = 1; i <= N; i++) {
cin >> w;
A.insert(w, i);
}
Mat X = A.solve();
//printf("%llu
", pow_mat(X, L + 1));
cout << pow_mat(X, L + 1) << endl;
}
return 0;
}
Mat Aho_Corasick::solve() {
getFail();
Mat ret(sz + 3, sz + 3);
for (int i = 0; i < sz; i++) {
if (tag[i] || last[i])
continue;
for (int v = 0; v < sigma_size; v++) {
int u = i;
while (u && g[u][v] == 0)
u = fail[u];
u = g[u][v];
ret.s[u][i]++;
}
ret.s[sz][i]++;
}
ret.s[sz][sz] = 1;
ret.s[sz+1][sz+1] = 26;
ret.s[sz+2][sz+1] = ret.s[sz+2][sz+2] = 1;
return ret;
}
void Aho_Corasick::init() {
sz = 1;
tag[0] = 0;
memset(g[0], 0, sizeof(g[0]));
}
int Aho_Corasick::idx(char ch) {
return ch - 'a';
}
void Aho_Corasick::put(int x, int y) {
}
void Aho_Corasick::insert(char* str, int k) {
int u = 0, n = strlen(str);
for (int i = 0; i < n; i++) {
int v = idx(str[i]);
if (g[u][v] == 0) {
tag[sz] = 0;
memset(g[sz], 0, sizeof(g[sz]));
g[u][v] = sz++;
}
u = g[u][v];
}
tag[u] = k;
}
void Aho_Corasick::match(char* str) {
int n = strlen(str), u = 0;
for (int i = 0; i < n; i++) {
int v = idx(str[i]);
while (u && g[u][v] == 0)
u = fail[u];
u = g[u][v];
if (tag[u])
put(i, u);
else if (last[u])
put(i, last[u]);
}
}
void Aho_Corasick::getFail() {
queue<int> que;
for (int i = 0; i < sigma_size; i++) {
int u = g[0][i];
if (u) {
fail[u] = last[u] = 0;
que.push(u);
}
}
while (!que.empty()) {
int r = que.front();
que.pop();
for (int i = 0; i < sigma_size; i++) {
int u = g[r][i];
if (u == 0) {
g[r][i] = g[fail[r]][i];
continue;
}
que.push(u);
int v = fail[r];
while (v && g[v][i] == 0)
v = fail[v];
fail[u] = g[v][i];
last[u] = tag[fail[u]] ? fail[u] : last[fail[u]];
}
}
}
版权声明:本文博主原创文章。博客,未经同意不得转载。