• Codeforces 338D GCD Table 中国剩余定理


    主题链接:点击打开链接


    特定n*m矩阵,[i,j]分值为gcd(i,j)

    给定一个k长的序列,问能否匹配上 矩阵的某一行的连续k个元素

    思路:

    我们要求出一个解(i,j) 使得 i<=n && j<=m 此时输出 YES

    对于j

    j % b[0] = 0

    j+1 % b[1] = 0

    ···

    j+l % b[l] = 0

    依据定理:若 a == b (mod n) => (a+c) == b+c (mod n)

    所以将上式变换为

    j % b[0] = 0

    j % b[1] = -1

    ···

    j % b[n-1] = - (n-1)

    最后求出的i,j 检验一下是否满足 gcd(i,j+k) == input[k];

    #include<stdio.h>
    #include<string.h>
    #include<iostream>
    #include<algorithm>
    #include<math.h>
    #include<set>
    #include<queue>
    #include<vector>
    #include<map>
    using namespace std;
    #define ll __int64
    ll gcd(ll a, ll b) {
    	return b == 0 ? a : gcd(b, a%b);
    }
    void extend_gcd (ll a , ll b , ll& d, ll &x , ll &y) {  
    	if(!b){d = a; x = 1; y = 0;}
    	else {extend_gcd(b, a%b, d, y, x); y-=x*(a/b);}
    }
    ll china(ll l, ll r, ll *m, ll *a){ //下标[l,r] 方程x%m=a;
    	ll lcm = 1;
    	for(ll i = l; i <= r; i++)lcm = lcm/gcd(lcm,m[i])*m[i];
    	for(ll i = l+1; i <= r; i++) {
    		ll A = m[l], B = m[i], d, x, y, c = a[i]-a[l];
    		extend_gcd(A,B,d,x,y);
    		if(c%d)return -1;
    		ll mod = m[i]/d;
    		ll K = ((x*c/d)%mod+mod)%mod;
    		a[l] = m[l]*K + a[l];
    		m[l] = m[l]*m[i]/d;
    	}
    	if(a[l]==0)return lcm;
    	return a[l];
    }
    #define N 10005
    ll n[N],b[N],tmp[N],len,nn,mm;
    bool work(){
    	memset(b, 0, sizeof b);
    	memcpy(tmp,n,sizeof n);
    	ll i = china(1,len,n,b);
    	if(i>nn || i<=0)return false;
    	for(ll hehe = 1; hehe <= len; hehe++)b[hehe] = -hehe+1;
    	memcpy(n,tmp, sizeof n);
    	ll j = china(1,len,tmp,b);
    	if(j+len-1>mm || j<=0)return false;
    	for(ll hehe = 1; hehe <= len; hehe++)if(gcd(i,j+hehe-1)!=n[hehe])return false;
    	return true;
    }
    int main(){  
    	while(cin>>nn>>mm>>len){
    		for(ll i = 1; i <= len; i++) cin>>n[i];
    		work()?

    puts("YES"):puts("NO"); } return 0; }



    版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 相关阅读:
    再见OI,AFO
    时间复杂度
    NOIP真题:矩阵取数问题
    [USACO12FEB]附近的牛Nearby Cows
    合唱队
    子串
    ZJOI2010基站选址
    分治FFT学习笔记
    「HAOI2018」染色
    「SDOI2015」序列统计
  • 原文地址:https://www.cnblogs.com/zfyouxi/p/4836319.html
Copyright © 2020-2023  润新知