• 基于jupyter lab搭建网页编程环境并添加自定义python kernel和matlab kernel以及plotly的使用


    内容转载自我的博客

    说明

    即使该系统有用户zfbroottestubuntu等,下面介绍的步骤只影响本用户,既不需要root权限,也不会对其他用户造成影响(开机自启的service文件需要root用户编辑和设置开机自启,之后就不需要操作了)

    1. 创建虚拟环境jupyter

    # 安装venv
    sudo apt-get install python3-venv
    # 创建虚拟环境,名称为jupyter
    python3 -m venv jupyter
    

    2. 安装nodejs(用于jupyterlab安装扩展)

    # 下载nvm用于管理npm、nodejs环境
    wget -qO- https://raw.githubusercontent.com/nvm-sh/nvm/v0.35.3/install.sh | bash
    # 重新启动即可使用nvm命令
    # nvm ls-remote          列出nodejs所有可用版本
    # nvm install 10.10.0    安装nodejs 10.10.0版本
    # 安装nodejs最新版本
    nvm install node
    

    把nvm环境bin文件夹放入PATH,即在~/.bashrc添加一行内容,必须把自己路径放在前面,避免先搜索到/usr/local/bin目录:

    export PATH=/home/zfb/.nvm/versions/node/v14.5.0/bin:${PATH}
    

    3. 安装pip包

    # 激活虚拟环境jupyter
    source jupyter/bin/activate
    # 在虚拟环境jupyter中安装jupyterlab和nodejs
    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyterlab npm nodejs
    

    4. 使用jupyterlab

    先把python虚拟环境jupyterbin文件夹放入PATH,即在~/.bashrc添加一行内容,必须把自己路径放在前面,避免先搜索到/usr/local/bin目录:

    export PATH=/home/zfb/jupyter/bin:${PATH}
    

    在命令行输入jupyter lab即可在本地端口打开(不需要激活虚拟环境),可以通过命令which jupyter得到/home/zfb/jupyter/bin/jupyter结果
    在jupyterlab运行期间,可以通过命令jupyter notebook list查看当前运行的jupyter实例
    列出当前已安装的扩展:jupyter labextension list
    卸载某个扩展:jupyter labextension uninstall my-extension-name
    查看jupyter的kernel:jupyter kernelspec list
    注意:http://127.0.0.1:8888/lab是jupyterlab的地址;http://127.0.0.1:8888/tree是传统jupyter notebook的地址

    5. 配置jupyterlab

    在终端输入以下命令生成加密秘钥:

    # 激活虚拟环境jupyter
    source jupyter/bin/activate
    # 密码设置为123456,此命令输出密码的sha1结果,用于下一步配置文件token
    python -c "from notebook.auth import passwd;print(passwd('123456'))"
    

    在命令行输入jupyter lab --generate-config,则会生成文件/home/zfb/.jupyter/jupyter_notebook_config.py,打开该文件,修改以下内容:

    c.NotebookApp.allow_remote_access = True
    c.NotebookApp.ip = '0.0.0.0'
    c.NotebookApp.notebook_dir = '/home/zfb/jp_data/'
    c.NotebookApp.open_browser = False
    c.NotebookApp.password = 'sha1:10d130e9bad7:b73d9821f96ccc4f42b2071b5dc46f2357373da3'
    c.NotebookApp.port = 8888
    

    安装扩展时如果找不到node,那么需要确保它在PATH,然后手动启动jupyter lab,不要使用service启动即可在浏览器点击install安装

    6. 开机自启jupyter

    切换root用户(zfb用户不能执行sudo命令),创建文件jupyter-zfb.service,内容如下:

    [Unit]
    Description=Auto start jupyter lab Service for web
    After=network.target
    
    [Service]
    Type=simple
    # Type=forking
    # PIDFile=/var/pid/master.pid
    # 如果是在为其他用户配置jupyterlab,这里填对应的用户名
    User=zfb
    Restart=on-failure
    RestartSec=10s
    WorkingDirectory=/home/zfb/jupyter
    ExecStart=/home/zfb/jupyter/bin/jupyter lab
    # ExecReload=/home/zfb/jupyter/bin/jupyter lab
    
    [Install]
    WantedBy=multi-user.target
    

    然后依次执行下面命令:

    # 复制jupyter-zfb.service文件到指定目录
    sudo cp ./jupyter-zfb.service /etc/systemd/system/
    # 设置jupyter-zfb开机自启
    systemctl enable jupyter-zfb.service
    # 重载service文件
    sudo systemctl daemon-reload
    # 查看所有的开机自启项
    systemctl list-unit-files --type=service|grep enabled
    # 手动开启jupyter-zfb服务
    service jupyter-zfb start
    # 查看jupyter-zfb服务的运行状态
    service jupyter-zfb status
    # 停止jupyter-zfb服务
    service jupyter-zfb stop
    

    查看服务状态的输出如下:

    root1@my-Server:~$ service jupyter-zfb status
    ● jupyter-zfb.service - Auto start jupyter lab Service for web
       Loaded: loaded (/etc/systemd/system/jupyter-zfb.service; enabled; vendor preset: enabled)
       Active: active (running) since Sun 2020-07-19 23:59:44 CST; 3s ago
     Main PID: 19426 (jupyter-lab)
        Tasks: 1 (limit: 7372)
       CGroup: /system.slice/jupyter-zfb.service
               └─19426 /home/zfb/jupyter/bin/python3 /home/zfb/jupyter/bin/jupyter-lab
    
    Jul 19 23:59:44 my-Server systemd[1]: Started Auto start jupyter lab Service for web.
    Jul 19 23:59:44 my-Server jupyter[19426]: [I 23:59:44.704 LabApp] JupyterLab extension loaded from /home/zfb/
    Jul 19 23:59:44 my-Server jupyter[19426]: [I 23:59:44.704 LabApp] JupyterLab application directory is /home/z
    Jul 19 23:59:44 my-Server jupyter[19426]: [I 23:59:44.706 LabApp] Serving notebooks from local directory: /ho
    Jul 19 23:59:44 my-Server jupyter[19426]: [I 23:59:44.706 LabApp] The Jupyter Notebook is running at:
    Jul 19 23:59:44 my-Server jupyter[19426]: [I 23:59:44.706 LabApp] http://my-Server:8888/
    Jul 19 23:59:44 my-Server jupyter[19426]: [I 23:59:44.706 LabApp] Use Control-C to stop this server and shut 
    root1@my-Server:~$ 
    

    问题:service运行,则一旦安装扩展之后重新打开,扩展处就显示500 Internal Server Error;但是直接运行在控制台无问题;nohup jupyter lab &也无问题;screen也无问题

    6. 开机自启和nohup运行

    创建文件startjupyterlab.sh并分配执行权限:

    #!/bin/bash
    # 后台运行,重定向错误日志,导出pid到文件
    # nohup会免疫HUP信号,>>表示追加模式
    /usr/bin/nohup /home/zfb/jupyter/bin/jupyter lab >> /home/zfb/jupyter/log/jupyterlab.log 2>&1 & echo $! > /home/zfb/jupyter/run_jupyter.pid
    

    ubuntu 18.04不再使用inited管理系统,改用systemd,原本简单方便的/etc/rc.local文件已经没有了。systemd默认读取/etc/systemd/system/下的配置文件,该目录下的文件会链接/lib/systemd/system/下的文件,一般系统安装完/lib/systemd/system/下会有rc-local.service文件,即我们需要的配置文件,里面有写到rc.local的启动顺序和行为,文件内容如下cat /lib/systemd/system/rc-local.service

    #  SPDX-License-Identifier: LGPL-2.1+
    #
    #  This file is part of systemd.
    #
    #  systemd is free software; you can redistribute it and/or modify it
    #  under the terms of the GNU Lesser General Public License as published by
    #  the Free Software Foundation; either version 2.1 of the License, or
    #  (at your option) any later version.
    
    # This unit gets pulled automatically into multi-user.target by
    # systemd-rc-local-generator if /etc/rc.local is executable.
    [Unit]
    Description=/etc/rc.local Compatibility
    Documentation=man:systemd-rc-local-generator(8)
    ConditionFileIsExecutable=/etc/rc.local
    After=network.target
    
    [Service]
    Type=forking
    ExecStart=/etc/rc.local start
    TimeoutSec=0
    RemainAfterExit=yes
    GuessMainPID=no
    

    systemctl status rc-local可以查看当前是否有rc-local这个服务,如果没有则需要创建ln -fs /lib/systemd/system/rc-local.service /etc/systemd/system/rc-local.service。设置开机启动并运行服务可以看到如下输出:

    zfb@my-Server:~$ service rc-local status
    ● rc-local.service - /etc/rc.local Compatibility
       Loaded: loaded (/lib/systemd/system/rc-local.service; static; vendor preset: enabled)
      Drop-In: /lib/systemd/system/rc-local.service.d
               └─debian.conf
       Active: inactive (dead)
    Condition: start condition failed at Mon 2020-07-20 14:39:15 CST; 2s ago
               └─ ConditionFileIsExecutable=/etc/rc.local was not met
         Docs: man:systemd-rc-local-generator(8)
    zfb@ny-Server:~$
    

    然后执行以下操作:

    # 创建文件
    sudo vim /etc/rc.local
    # 添加内容
    #  #!/bin/bash  
    #  
    #  su - zfb -c "/bin/bash /home/zfb/startjupyterlab.sh"
    
    # 添加执行权限
    sudo chmod +x /etc/rc.local
    

    运行service rc-local start即可启动服务,service rc-local status查看运行状态
    日志分割:然后创建文件/etc/logrotate.d/jupyter-zfb

    su zfb zfb
    /home/zfb/jupyter/log/jupyterlab.log{
        weekly
        minsize 10M
        rotate 10
        missingok
        dateext
        notifempty
        sharedscripts
        postrotate
            if [ -f /home/zfb/jupyter/run_jupyter.pid ]; then
                /bin/kill -9 `cat /home/zfb/jupyter/run_jupyter.pid`
            fi
            /usr/bin/nohup /home/zfb/jupyter/bin/jupyter lab >> /home/zfb/jupyter/log/jupyterlab.log 2>&1 & echo $! > /home/zfb/jupyter/run_jupyter.pid
        endscript
    }
    

    执行命令logrotate -dvf /etc/logrotate.d/jupyter-zfb可以查看每次轮询的输出

    • d表示只是显示,并不实际执行
    • v表示显示详细信息
    • f表示即使不满足条件也强制执行一次

    7. 添加其他python环境的kernel

    在不激活任何环境的终端,创建新的虚拟环境py36(最后把它添加到jupyter的kernel)

    # 创建新的虚拟环境py36
    python3 -m venv py36
    # 激活新虚拟环境py36
    source py36/bin/activate
    # 为新环境安装需要的库
    # pip install -i https://pypi.tuna.tsinghua.edu.cn/simple
    # 为虚拟环境安装kernel
    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple ipykernel
    # 将此虚拟环境配置到jupyter的kernel中,此命令返回
    # Installed kernelspec kernel_py36 in /home/zfb/.local/share/jupyter/kernels/kernel_py36
    # 若不指定--user,则会提示权限不足,因为默认安装到/usr/local/share/jupyter
    python -m ipykernel install --name kernel_py36 --user
    # 启动jupyterlab,此时可以看到已经有两个kernel可供切换(jupyter、kernel_py36)
    jupyter lab
    

    删除某个kernel:jupyter kernelspec remove kernel_py36

    8. 添加matlab的kernel

    激活虚拟环境jupyter(jupyterlab被安装在此虚拟环境),然后安装matlab_kernal,再切换到matlab的安装目录extern/engines/python/,运行setup.py文件,具体步骤的命令如下:

    # 激活虚拟环境jupyter
    source jupyter/bin/activate
    # 在虚拟环境jupyter安装matlab_kernel
    pip install matlab_kernel
    # 若不指定--user,则会提示权限不足
    python -m matlab_kernel install --user
    # 切换到matlab安装目录的extern/engines/python/,然后运行命令
    python setup.py install
    # --build-base="/home/zfb/build" install --prefix="/home/zfb/jupyter/lib/python3.6/site-packages"
    # 此时运行jupyter kernelspec list即可看到如下输出
    # Available kernels:
    #   matlab     /home/zfb/jupyter/share/jupyter/kernels/matlab
    #   python3    /home/zfb/jupyter/share/jupyter/kernels/python3
    

    保证最后/home/zfb/jupyter/lib/python3.6/site-packages/文件夹下有matlab文件夹和matlab_kernel文件夹:

    matlab
    ├── engine
    │   ├── _arch.txt
    │   ├── basefuture.py
    │   ├── engineerror.py
    │   ├── enginehelper.py
    │   ├── enginesession.py
    │   ├── fevalfuture.py
    │   ├── futureresult.py
    │   ├── __init__.py
    │   ├── matlabengine.py
    │   ├── matlabfuture.py
    │   └── __pycache__
    │       ├── basefuture.cpython-36.pyc
    │       ├── engineerror.cpython-36.pyc
    │       ├── enginehelper.cpython-36.pyc
    │       ├── enginesession.cpython-36.pyc
    │       ├── fevalfuture.cpython-36.pyc
    │       ├── futureresult.cpython-36.pyc
    │       ├── __init__.cpython-36.pyc
    │       ├── matlabengine.cpython-36.pyc
    │       └── matlabfuture.cpython-36.pyc
    ├── __init__.py
    ├── _internal
    │   ├── __init__.py
    │   ├── mlarray_sequence.py
    │   ├── mlarray_utils.py
    │   └── __pycache__
    │       ├── __init__.cpython-36.pyc
    │       ├── mlarray_sequence.cpython-36.pyc
    │       └── mlarray_utils.cpython-36.pyc
    ├── mlarray.py
    ├── mlexceptions.py
    └── __pycache__
        ├── __init__.cpython-36.pyc
        ├── mlarray.cpython-36.pyc
        └── mlexceptions.cpython-36.pyc
    5 directories, 31 files
    
    
    matlab_kernel
    ├── check.py
    ├── __init__.py
    ├── kernel.json
    ├── kernel.py
    ├── __main__.py
    ├── matlab
    │   ├── engine
    │   │   ├── _arch.txt
    │   │   ├── basefuture.py
    │   │   ├── engineerror.py
    │   │   ├── enginehelper.py
    │   │   ├── enginesession.py
    │   │   ├── fevalfuture.py
    │   │   ├── futureresult.py
    │   │   ├── __init__.py
    │   │   ├── matlabengine.py
    │   │   ├── matlabfuture.py
    │   │   └── __pycache__
    │   │       ├── basefuture.cpython-36.pyc
    │   │       ├── engineerror.cpython-36.pyc
    │   │       ├── enginehelper.cpython-36.pyc
    │   │       ├── enginesession.cpython-36.pyc
    │   │       ├── fevalfuture.cpython-36.pyc
    │   │       ├── futureresult.cpython-36.pyc
    │   │       ├── __init__.cpython-36.pyc
    │   │       ├── matlabengine.cpython-36.pyc
    │   │       └── matlabfuture.cpython-36.pyc
    │   ├── __init__.py
    │   ├── _internal
    │   │   ├── __init__.py
    │   │   ├── mlarray_sequence.py
    │   │   ├── mlarray_utils.py
    │   │   └── __pycache__
    │   │       ├── __init__.cpython-36.pyc
    │   │       ├── mlarray_sequence.cpython-36.pyc
    │   │       └── mlarray_utils.cpython-36.pyc
    │   ├── mlarray.py
    │   ├── mlexceptions.py
    │   └── __pycache__
    │       ├── __init__.cpython-36.pyc
    │       ├── mlarray.cpython-36.pyc
    │       └── mlexceptions.cpython-36.pyc
    ├── matlabengineforpython-R2020a-py3.6.egg-info
    └── __pycache__
        ├── check.cpython-36.pyc
        ├── __init__.cpython-36.pyc
        ├── kernel.cpython-36.pyc
        └── __main__.cpython-36.pyc
    
    7 directories, 41 files
    

    可以参考链接1链接2

    9. 使用frp内网穿透

    腾讯云主机的frps.ini添加一行:

    # 不需要和frpc.ini一致
    vhost_http_port = 8888
    

    运行jupyterlab的服务器的frpc.ini添加一个部分:

    [web]
    type = http
    local_port = 8888
    custom_domains = lab.example.cn
    

    如果要使用frp内网穿透的同时又给它设置域名,则域名解析记录添加一条名称为lab的A记录到腾讯云主机的IP(frps),在腾讯云主机再添加一个nginx项:

        server{
            listen 80;
            # 如果需要ssl,参考https://blog.whuzfb.cn/blog/2020/07/07/web_https/
            # listen 443 ssl;
            # include ssl/whuzfb.cn.ssl.conf;
            # 此时支持http与https
            server_name lab.example.cn;
            access_log /home/ubuntu/frp_linux_amd64/log/access_jupyter.log;
            error_log /home/ubuntu/frp_linux_amd64/log/error_jupyter.log;
            # 防止jupyter保存文件时413 Request Entity Too Large
            # client_max_body_size 50m; 0表示关闭检测
            client_max_body_size 0;
            location /{
                proxy_set_header Host $host;
                proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
                proxy_redirect off;
                proxy_buffering off;
                proxy_pass http://127.0.0.1:8888;
            }
    
            location ~* /(api/kernels/[^/]+/(channels|iopub|shell|stdin)|terminals/websocket)/? {
                proxy_pass http://127.0.0.1:8888;
                proxy_set_header X-Real-IP $remote_addr;
                proxy_set_header Host $host;
                proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
                # WebSocket support
                proxy_http_version 1.1;
                proxy_set_header Upgrade $http_upgrade;
                proxy_set_header Connection "upgrade";
            }
            # -------  旧方法:还是有部分报错/api/kernels err_too_many_redirects  ---------
            # # 必须有,否则请求/api/kernels/ 的状态码都是400
            # location /api/kernels/ {
            #     proxy_pass            http://127.0.0.1:8888;
            #     proxy_set_header      Host $host;
            #     # websocket support
            #     proxy_http_version    1.1;
            #     proxy_set_header      Upgrade "websocket";
            #     proxy_set_header      Connection "Upgrade";
            #     proxy_read_timeout    86400;
            # }
            # # 必须有,否则请求/terminals/ 的状态码都是400
            # location /terminals/ {
            #     proxy_pass            http://127.0.0.1:8888;
            #     proxy_set_header      Host $host;
            #     # websocket support
            #     proxy_http_version    1.1;
            #     proxy_set_header      Upgrade "websocket";
            #     proxy_set_header      Connection "Upgrade";
            #     proxy_read_timeout    86400;
            # }
        }
    

    10. VSCode连接jupyter

    由于jupyterlab可以运行在本地指定端口,所以可以通过IP和端口在客户自己浏览器进行远程开发(保证远程服务器的jupyter lab开机自启服务),这在局域网内很方便,但是对于没有公网IP的话,就无法使用此功能
    好在VSCode可以直接打开远程jupyter,具体操作如下

    • 在客户本地机器安装Remote Development三件套插件,然后选择Remote-SSH: Connect to host,可以在本地提前创建配置文件(C:Userszfb.sshconfig或者C:ProgramDatasshssh_config),内容类似:
    # 第一个远程机器
    Host mylab
        HostName 54.33.135.211
        Port 22
        User ubuntu
    
    • 根据提示输入远程服务器的密码即可连接成功,然后在远程服务器安装PythonPylanceIntelliCode这三个插件,打开远程服务器的文件夹,创建一个扩展名为ipynb的文件,然后VSCode会自动提示选择Python版本(既可以选择系统的,也可以根据路径选择某个虚拟环境里面的),接着VSCode会自动连接Kernel,用户可以在右上角查看当前Kernel的状态或者切换Kernel

    11. ssh连接jupyter在本地打开

    在浏览器使用远程ip:port的方法,则服务器必须有公网,而且还费流量,另一种方法,ssh连接,然后端口映射
    服务器1:处于内网,已安装frpc,用户名为zfb,已安装配置好jupyterlab,运行在8888端口
    云主机2:处于公网,ip为56.78.12.34,已安装frps,用户名为ubuntu,仅用于服务器的内网穿透,端口7001为服务器1提供ssh转发
    执行以下命令,把用户3的电脑的本地端口8080绑定到服务器1的端口8888:
    ssh -p 7001 -NL localhost:8080:localhost:8888 zfb@56.78.12.34
    此时在用户3的本机打开网址http://127.0.0.1:8080即可访问服务器1的jupyterlab

    12. matplotlib安装

    首先在虚拟环境jupyter安装matplotlib库和ipympl库,后者用于显示可交互图形

    # 激活虚拟环境jupyter
    source jupyter/bin/activate
    # 在虚拟环境jupyter安装matlab_kernel
    pip install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib ipympl
    

    重新打开浏览器会提示rebuild,点击确定。等待build成功然后点击reload即可正常使用此插件,如下代码

    %matplotlib widget
    import pandas as pd
    import numpy as np
    import matplotlib
    from matplotlib import pyplot as plt
    
    ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
    ts = ts.cumsum()
    
    df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
                      columns=['A', 'B', 'C', 'D'])
    df = df.cumsum()
    df.plot()
    plt.legend(loc='best')
    plt.title('我是中文')
    

    如果中文乱码,则纠正中文乱码

    13. 使用plotly显示python程序绘制的图片

    使用方法见官网,python的使用不需要key和用户名,直接用就行

    14. 使用plotly显示matlab的图片

    详细使用方法见官网教程。注册plotly的chart-studio账号,然后在个人账户的setting点击api keys,选择Regenerate key,记住这个key和自己的用户名。然后下载压缩包并解压,打开matlab,输入

    >> cd ~/plotly-graphing-library-for-matlab-master/
    >> plotlysetup('DemoAccount', 'lr1c44zw81')  % 回车,剩下的内容都是自动执行
    Adding Plotly to MATLAB toolbox directory ...  Done
    Welcome to Plotly! If you are new to Plotly please enter: >> plotlyhelp to get started!
    

    此时会创建文件~/.plotly/.credentials,里面已经保存用户名和key(注意该用户需要有toolbox的写入权限)
    然后在jupyterlab写:

    [X,Y,Z] = peaks;
    contour(X,Y,Z,20);
    % 个人用户还是用离线模式吧,否则只能创建100个图,还必须是公开分享
    getplotlyoffline('https://cdn.plot.ly/plotly-latest.min.js')
    fig2plotly(gcf, 'offline', true)
    

    该命令会在当前目录生成一个html文件,双击打开即可
    注意: 如果发现在其他目录无法使用fig2plotly函数,则可能是上一步骤,将plotly添加到Matlab工具箱出现了问题。可以自己手动将其复制到指定工具箱路径,或者直接把plotly-graphing-library-for-matlab-master文件夹的绝对路径添加到Matlab PATH

    15. 使用plotly绘制matlab的包含ColorBar的图片

    如果正在使用新版Matlab(R2019a以后),在.m文件中如果使用colorbar函数,则在调用plotly时候可能会遇到报错

    Insufficient number of outputs from right hand side of equal sign to satisfy assignment.
    
    Error in findColorbarAxis (line 8)
    colorbarAxis = obj.State.Axis(colorbarAxisIndex).Handle;
    
    Error in plotlyfig/update (line 557)
                    colorbarAxis = findColorbarAxis(obj, handle(cols(c)));
    
    Error in plotlyfig (line 208)
                    obj.update;
    
    Error in fig2plotly (line 44)
    p = plotlyfig(varargin{:});
    

    参考链接,于是打开文件findColorBarAxis.m

    # 若Matlab的Plotly工具箱安装位置为/home/Polyspace/R2020a/toolbox/plotly
    sudo vi /home/Polyspace/R2020a/toolbox/plotly/plotlyfig_auz/helpers/findColorBarAxis.m
    

    整个文件内容替换为如下:

    function colorbarAxis = findColorbarAxis(obj,colorbarHandle)
    if isHG2    
        colorbarAxisIndex = find(arrayfun(@(x)(isequal(getappdata(x.Handle,'ColorbarPeerHandle'),colorbarHandle)),obj.State.Axis));
        % If the above returns empty then we are on a more recent Matlab
        % release where the appdata entry is called LayoutPeers
        if isempty(colorbarAxisIndex)
            colorbarAxisIndex = find(arrayfun(@(x)(isequal(getappdata(x.Handle,'LayoutPeers'),colorbarHandle)),obj.State.Axis));
        end
    else
        colorbarAxisIndex = find(arrayfun(@(x)(isequal(getappdata(x.Handle,'LegendColorbarInnerList'),colorbarHandle) + ...
            isequal(getappdata(x.Handle,'LegendColorbarOuterList'),colorbarHandle)),obj.State.Axis));
    end
    colorbarAxis = obj.State.Axis(colorbarAxisIndex).Handle;
    end
    
  • 相关阅读:
    ubuntu下按安装lamp
    linux 一些简记
    编写shell脚本步骤
    C++ array vector 数组
    抓取网页扒图片相对路径改绝对路径
    静态html文件js读取url参数
    IE7的web标准之道——1:前言(兼目录) (很牛的CSS书籍)
    感谢放逐自由《博客园精华集》分类索引
    这篇文章证实了索引对于IN,LIKE的优化程度,顺便学会了怎么看看语耗费的时间
    命名空间“System”中不存在类型或命名空间名称“Linq”(是缺少程序集引用吗?)
  • 原文地址:https://www.cnblogs.com/zfb132/p/14240364.html
Copyright © 2020-2023  润新知