• 洛谷 p1057 传球游戏


    上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。

    游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师在此吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。

    聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。

    输入格式:

    共一行,有两个用空格隔开的整数n,m(3<=n<=30,1<=m<=30)。

    输出格式:

    共一行,有一个整数,表示符合题意的方法数。

     

    输入样例#1:
    3 3
    输出样例#1:
    2

    40%的数据满足:3<=n<=30,1<=m<=20

    100%的数据满足:3<=n<=30,1<=m<=30

    f[i][j]表示经过j步传到第i人手中的方案数

    因为球一开始就在小蛮手中,所以要f[1][0]=1

    所有人是按圆形站的,所以每人都可能接到左右两边的人传给他的球,所以n和1位置需要特殊处理一下

    #include<iostream>
    int i,j,k,n,m,f[31][31];
    int main()
    { 
      scanf("%d %d",&n,&m);
      f[1][0]=1;
      for(i=1;i<=m;i++)
      { 
        f[1][i]=f[2][i-1]+f[n][i-1];
        for(j=2;j<=n-1;j++) f[j][i]=f[j-1][i-1]+f[j+1][i-1];
        f[n][i]=f[n-1][i-1]+f[1][i-1];
      }
      printf("%d",f[1][m]);
      return 0;
    }
  • 相关阅读:
    登录界面的实现
    构建之法阅读笔记02
    第三周周总结
    四则运算 2
    构建之法阅读笔记01
    随机生成四则运算题目
    Node.js_express_服务器渲染页面 ejs
    BOM 浏览器对象模型_window.navigator
    Node.js_express_浏览器存储技术 Cookie(服务器将少量数据交于浏览器存储管理)
    BOM 浏览器对象模型_XMLHttpRequest 对象
  • 原文地址:https://www.cnblogs.com/zeroform/p/7106271.html
Copyright © 2020-2023  润新知