• 现代算法(二) PSO 算法


      概念不复述了,网上都有,这里讨论标准PSO

      w = 0.9; c1 = 2; c2 = 2; Vmax = 3;

      种群大小 M = 20;迭代次数 N = 1000

     1 function res=PSO(N,M,w,c1,c2,Vmax)
     2 %w = 0.9; c1 = 2; c2 = 2; Vmax = 2;
     3 %P(:,1:2) = 200*rand(M,2)-100;
     4 P(:,1:2) = 3*rand(M,2);
     5 P(:,3:4) = 2*Vmax*rand(M,2)-Vmax;
     6 [g,pbest]= pb(P);
     7 j = 0;
     8 res = [];
     9 tic 
    10 while j < N     
    11     for i=1:M         % exchange message between each other         
    12         if(fitness(P(i,1),P(i,2)) < fitness(pbest(i,2),pbest(i,3)))             
    13             pbest(i,2:3) = P(i,1:2);             
    14             pbest(i,1) = fitness(P(i,1),P(i,2));         
    15         end
    16         g = pbest(i,:);           % update g by Piself         
    17         g = betterNei(pbest,i,g); % update g vs neighbour
    18  
    19         % update position and speed of Pi         % update Px         
    20         P(i,3:4) = w*P(i,3:4)+c1*rand*(pbest(i,1:2)-P(i,1:2)) ...
    21             + c2*rand*(g(2:3)-P(i,1:2));         
    22         P(i,3:4) = P2Vmax(P(i,3:4),Vmax);         % update Pv         
    23         P(i,1:2) = P(i,1:2) + P(i,3:4);     
    24     end
    25     j = j + 1; 
    26     res(j) = g(1);
    27 end
    28 time = toc;
    29 result(g,time);
    30 end

       Fitness

    function f=fitness(x1,x2)
    f = 2*x1.^2-4*x1.*x2+4*x2.^2-6*x1-3*x2....
        +1000*(max(x1+x2-3,0))+1000*(max(4*x1+x2-9,0));%1000 可以换成任意非常大数

       P2Max

    1 function P = P2Vmax(P,Vmax)
    2 % > Vmax 
    3 P(P > Vmax) = Vmax; 
    4 % < -Vmax 
    5 P(P < -Vmax) = -Vmax;
    6 end

      pb

    1 function [g,pbes]=pb(P)
    2 pbes(:,1) = fitness(P(:,1),P(:,2));
    3 pbes(:,2:3) = P(:,1:2);
    4 [~,temp1] = min(pbes);%找出列向量最小的位置
    5 temp1 = min(temp1);%最小中的最小
    6 g(1) = pbes(temp1);
    7 g(2:3) = P(temp1,1:2);
    8 end

      result

    function result(g,time) 
    fprintf('      x1: %10.12f
    ',g(2)); 
    fprintf('      x2: %10.12f
    ',g(3)); 
    fprintf('f(x1,x2): %10.12f
    ',g(1)); 
    fprintf('    time: %10.12f s
    ',time); 
    end

      Better_Nei

    % 在邻居中寻找更好的点代替
    function g = betterNei(pbes,i,g)
    M = size(pbes,1);
    pbe(1:i-1,:) = pbes(1:i-1,2:3);
    % i的附近
    pbe(i:M-1,:) = pbes(i+1:M,2:3);
    temp0 = fitness(pbe(:,1),pbe(:,2));
    [~,temp] = min(temp0);
    temp = min(temp);
    g(1) = temp0(temp);
    g(2:3) = pbe(temp,:);
    end

      可视化

    res1 = PSO(1000,20,0.9,2,2,3);
    res2 = PSO(1000,20,0.9,2,2,2);
    res3 = PSO(1000,20,0.9,2,2,4);
    plot(1:1000,res1,1:1000,res2,1:1000,res3)
    axis([1,1000,-12,0])
    legend('Vmax=3','Vmax=2','Vmax=4','Location','NorthEast')

    结果:

    完.hahaha

  • 相关阅读:
    angular4浏览器兼容问题
    angular4组件生命周期
    angular4路由
    CDH 安装配置指南(Tarball方式)
    nginx-1.14.0安装
    redis-3.0.6安装
    CDH安装kafka
    CDH配置JAVA_HOME
    ntp集群时间同步
    VMware联网
  • 原文地址:https://www.cnblogs.com/zero27315/p/10547054.html
Copyright © 2020-2023  润新知