We'll define S(n) for positive integer n as follows: the number of the n's digits in the decimal base. For example, S(893) = 3,S(114514) = 6.
You want to make a consecutive integer sequence starting from number m (m, m + 1, ...). But you need to pay S(n)·k to add the numbern to the sequence.
You can spend a cost up to w, and you want to make the sequence as long as possible. Write a program that tells sequence's maximum length.
Input
The first line contains three integers w (1 ≤ w ≤ 1016), m (1 ≤ m ≤ 1016), k (1 ≤ k ≤ 109).
Please, do not write the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64dspecifier.
Output
The first line should contain a single integer — the answer to the problem.
Sample Input
9 1 1
9
77 7 7
7
114 5 14
6
1 1 2
0
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; long long w, m , k; long long temp1(long long x) { long long y = 0; while(x > 0){ x /= 10; y++; } return y; } long long temp2(long long x) { long long num = 1; for(int i = 1; i <= x; i++) num *= 10; return num; } int main() { long long sum; while(~scanf("%lld%lld%lld", &w, &m, &k)){ long long a = temp1(m);//位数 long long t = w / k;//需要减掉的数 long long t1 = t / a;//所需要的数的个数 long long t2 = temp2(a);//10..... long long ans = 0; while(t > 0){ if(t1 > t2 - m){ t -= (t2 - m) * a; ans += t2 - m; // printf("%d ",ans); a++; t1= t / a; t2 = temp2(a); m = temp2(a-1); } else { t -= t1 * a; ans += t1; break; } } printf("%lld ", ans); } return 0; }