1.spark submit参数
$ ./bin/spark-submit --class path.to.your.Class --master yarn --deploy-mode cluster [options] <app jar> [app options]
Multiple versions of Spark are installed but SPARK_MAJOR_VERSION is not set Spark1 will be picked by default Usage: spark-submit [options] <app jar | python file> [app arguments] Usage: spark-submit --kill [submission ID] --master [spark://...] Usage: spark-submit --status [submission ID] --master [spark://...] Options: --master MASTER_URL spark://host:port, mesos://host:port, yarn, or local. --deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or on one of the worker machines inside the cluster ("cluster") (Default: client). --class CLASS_NAME Your application's main class (for Java / Scala apps). --name NAME A name of your application. --jars JARS Comma-separated list of local jars to include on the driver and executor classpaths. --packages Comma-separated list of maven coordinates of jars to include on the driver and executor classpaths. Will search the local maven repo, then maven central and any additional remote repositories given by --repositories. The format for the coordinates should be groupId:artifactId:version. --exclude-packages Comma-separated list of groupId:artifactId, to exclude while resolving the dependencies provided in --packages to avoid dependency conflicts. --repositories Comma-separated list of additional remote repositories to search for the maven coordinates given with --packages. --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place on the PYTHONPATH for Python apps. --files FILES Comma-separated list of files to be placed in the working directory of each executor. --conf PROP=VALUE Arbitrary Spark configuration property. --properties-file FILE Path to a file from which to load extra properties. If not specified, this will look for conf/spark-defaults.conf. --driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M). --driver-java-options Extra Java options to pass to the driver. --driver-library-path Extra library path entries to pass to the driver. --driver-class-path Extra class path entries to pass to the driver. Note that jars added with --jars are automatically included in the classpath. --executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G). --proxy-user NAME User to impersonate when submitting the application. This argument does not work with --principal / --keytab. --help, -h Show this help message and exit --verbose, -v Print additional debug output --version, Print the version of current Spark Spark standalone with cluster deploy mode only: --driver-cores NUM Cores for driver (Default: 1). Spark standalone or Mesos with cluster deploy mode only: --supervise If given, restarts the driver on failure. --kill SUBMISSION_ID If given, kills the driver specified. --status SUBMISSION_ID If given, requests the status of the driver specified. Spark standalone and Mesos only: --total-executor-cores NUM Total cores for all executors. Spark standalone and YARN only: --executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode, or all available cores on the worker in standalone mode) YARN-only: --driver-cores NUM Number of cores used by the driver, only in cluster mode (Default: 1). --queue QUEUE_NAME The YARN queue to submit to (Default: "default"). --num-executors NUM Number of executors to launch (Default: 2). --archives ARCHIVES Comma separated list of archives to be extracted into the working directory of each executor. --principal PRINCIPAL Principal to be used to login to KDC, while running on secure HDFS. --keytab KEYTAB The full path to the file that contains the keytab for the principal specified above. This keytab will be copied to the node running the Application Master via the Secure Distributed Cache, for renewing the login tickets and the delegation tokens periodically.
For example:
$ ./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode cluster --driver-memory 4g --executor-memory 2g --executor-cores 1 --queue thequeue lib/spark-examples*.jar 10
In client
mode:
$ ./bin/spark-shell --master yarn --deploy-mode client
最近一直测试spark程序,对spark-submit的参数进行了调节。
通过上面图片可以看到,总共有7个节点,总共的VCores为133,总共内存为1.49TB,有3个application在运行,2个分别为spark thrift server和spark2 thrift server,1个为我提交的任务,可以看出我提交的任务占用了81个cpu VCores(1个为application master)。
提交命令:
time spark-submit --master yarn-client --driver-memory 10g --executor-memory 10g --num-executors 80 --class com.test.test.ByHour ~/cs0308/quickstart-SNAPSHOT.jar /test/origin/20170306_02 /test/result/02
其中
--num-executors 80 80个executor(默认是2个)
--executor-memory 10g exector内存大小(默认1g)
--driver-memory 10g Driver程序使用内存大小
--executor-cores 每个executor使用的内核数,默认为1
发现在设置过程中运行起来还有剩余的资源,但是若把参数直接设成80以上,程序一运行就直接报错,程序刚运行时申请资源会超过设置参数,然后就会下降80(设置参数)+1个cpu,1个为Application Master。这个是跑了1.2T大小的gz文件,跑完为4.6T的txt文件。
同样的程序在第二天跑的时候,发现老报sockettimeoutexception,重启集群(没有程序在运行)后,再一次运行同样的命令发现正常了(用的HDP的集群)。
具体spark-submit参数说明: https://my.oschina.net/u/140462/blog/519409