• MyBatis+Spring SQL效率测试报告


    1. 数据库结构

    2. insert 测试

    insert 的测试包括

    1) 批量拼接values()插入

    2) 有事务for循环插入

    3) 无事务for循环插入

    测试 SQL:

     <!-- 普通 insert -->
        <insert id="insert"
                parameterType="com.qunar.mybatistask.bean.Post"
                keyProperty="id">
            <![CDATA[
    
                insert into post (
                    title,
                    content,
                    author,
                    status,
                    created
                ) values (
                    #{title},
                    #{content},
                    #{author},
                    #{status},
                    #{created}
                )
    
            ]]>
        </insert>
    
        <!-- 拼接values insert -->
        <insert id="batchInsert"
                parameterType="java.util.List">
            <![CDATA[
                insert into post (
                    title,
                    content,
                    author,
                    status,
                    created
                ) values
             ]]>
            <foreach collection="list" item="post" separator=",">
                (
                #{post.title},
                #{post.content},
                #{post.author},
                #{post.status},
                #{post.created}
                )
            </foreach>
        </insert>

    测试代码:

    service

        /**
         * 批量拼接VALUES() insert
         *
         * @param postList
         * @return
         */
        @Override
        @Transactional(propagation = Propagation.REQUIRED)
        public int batchInsert(List<Post> postList) {
            int singleNum = 1000;
            int affectedRows = 0;
            for (int i = 0; i < Math.ceil((double)(postList.size() / singleNum)); i++) {
                affectedRows += sqlSession.insert("post.batchInsert", postList.subList(i * singleNum, (i + 1) * singleNum));
            }
            return affectedRows;
        }
    
        /**
         * 事务内循环insert
         *
         * @param postList
         * @return
         */
        @Override
        @Transactional(propagation = Propagation.REQUIRED)
        public int createList(List<Post> postList) {
            int affectedRows = 0;
            for (Post post : postList) {
                affectedRows += sqlSession.insert("post.insert", post);
            }
            return affectedRows;
        }

    test case:

        /**
         * 批量插入效率测试
         *
         * Method: batchInsert(List<Post> postList)
         * 
         */
        @Test
        public void testBatchInsert() throws Exception {
            List<Post> postList = Lists.newArrayList();
            for (int i = 0; i < 10000; i++) {
                Post post = new Post();
                post.setAuthor("test");
                post.setContent("test");
                post.setCreated(new Date());
                post.setTitle("test");
                post.setStatus(PostStatus.NORMAL);
                postList.add(post);
            }
    
            // 批量拼接SQL插入
            long start = System.nanoTime();
            int affectedRows = postService.batchInsert(postList);
            double duration = System.nanoTime() - start;
            System.out.format("batch: %.2f
    ", duration / 1.0e9);
            System.out.println("affected rows: " + affectedRows);
    
            // 事务内循环插入
            start = System.nanoTime();
            affectedRows = postService.createList(postList);
            duration = System.nanoTime() - start;
            System.out.format("transaction: %.2f
    ", duration / 1.0e9);
            System.out.println("affected rows: " + affectedRows);
    
            // 无事务直接循环插入
            start = System.nanoTime();
            affectedRows = 0;
            for (Post post : postList)
                affectedRows += postService.create(post);
            duration = System.nanoTime() - start;
            System.out.format("simple: %.2f
    ", duration / 1.0e9);
            System.out.println("affected rows: " + affectedRows);
        }

    结果 

    batch: 1.44
    affected rows: 10000
    transaction: 2.87
    affected rows: 10000
    simple: 77.57
    affected rows: 10000

    总结:

    排行

    1) 使用拼接的手段,这种插入其实就是batch,只不过这是手动batch

    2) 使用事务循环插入,相对于无事务快很多的原因大概是数据库连接和事务开启的次数

    3) 无事务循环插入, 我想应该没人这么写

    2. 单表循环查询与拼接in查询测试

    SQL

    <select id="selectById" parameterType="int" resultType="com.qunar.mybatistask.bean.Post">
             <![CDATA[
    
                select
                    id,
                    title,
                    content,
                    author,
                    status,
                    created
                from
                    post
                where
                    id = #{id}
    
            ]]>
        </select>
    
        <!-- 拼接where in条件查询 -->
        <select id="selectIn" parameterType="java.util.List" resultType="com.qunar.mybatistask.bean.Post">
            <![CDATA[
                select
                    id,
                    title,
                    content,
                    author,
                    status,
                    created
                from
                    post
                where
                    id in
            ]]>
            <foreach collection="list" item="id" open="(" close=")" separator=",">
                #{id}
            </foreach>
        </select>

    Service

        @Override
        public Post selectById(int id) {
            return sqlSession.selectOne("post.selectById", id);
        }
    
        @Override
        public List<Post> selectByIds(List<Integer> ids) {
            List<Post> postList = Lists.newArrayList();
            int singleNum = 1000;
            int start;
            int end;
            for (int i = 0; i < Math.ceil(((double)ids.size() / (double)singleNum)); i++) {
                start = i * singleNum;
                end = (i + 1) * singleNum;
                end = end > ids.size() ? ids.size() : end;
                List<Post> result = sqlSession.selectList("post.selectIn", ids.subList(start, end));
                postList.addAll(result);
            }
            return postList;
        }

    test case

        /**
         * 使用IN查询效率测试
         *
         * @throws Exception
         */
        @Test
        public void testInSelect() throws Exception {
            List<Integer> ids = Lists.newArrayList();
            for (int i = 1; i < 10000; i++) {
                ids.add(i);
            }
    
            // in 查询
            long start = System.nanoTime();
            List<Post> list = postService.selectByIds(ids);
            double duration = System.nanoTime() - start;
            System.out.format("in select: %.2f
    ", duration / 1.0e9);
            System.out.println("list size: " + list.size());
    
            // 循环查询
            list = Lists.newArrayList();
            start = System.nanoTime();
            for (int id : ids)
                list.add(postService.selectById(id));
            duration = System.nanoTime() - start;
            System.out.format("simple select: %.2f
    ", duration / 1.0e9);
            System.out.println("list size: " + list.size());
        }

    结果

    in select: 0.55
    list size: 9999
    simple select: 6.24
    list size: 9999

    总结:

    我想应该没人会用for循环去做查询吧

    3. 多表联结查询, join, form 2个table, in, exists 比较

    SQL

        <!-- 用于循环查询 -->
        <select id="selectAll" resultType="com.qunar.mybatistask.bean.Comment">
            <![CDATA[
              select
                cmt.id as id,
                cmt.post_id as postId,
                cmt.content as content
              from
                cmt
            ]]>
        </select>
    
        <!-- join 查询 -->
        <select id="selectJoin" resultType="com.qunar.mybatistask.bean.Comment">
            <![CDATA[
              select
                cmt.id as id,
                cmt.post_id as postId,
                cmt.content as content
              from
                cmt
              join
                post
              on
                post.id = cmt.post_id
            ]]>
        </select>
    
        <!-- from 2个table -->
        <select id="selectTowTable" resultType="com.qunar.mybatistask.bean.Comment">
            <![CDATA[
              select
                cmt.id as id,
                cmt.post_id as postId,
                cmt.content as content
              from
                cmt, post
              where cmt.post_id = post.id
            ]]>
        </select>
    
        <!-- in 联表查询 -->
        <select id="selectIn" resultType="com.qunar.mybatistask.bean.Comment">
          <![CDATA[
              select
                cmt.id as id,
                cmt.post_id as postId,
                cmt.content as content
              from
                cmt
              where
                cmt.post_id
              in
                (
                  select
                    post.id
                  from
                    post
                )
          ]]>
        </select>
    
        <!-- exists 联表查询 -->
        <select id="selectExists" resultType="com.qunar.mybatistask.bean.Comment">
          <![CDATA[
              select
                cmt.id as id,
                cmt.post_id as postId,
                cmt.content as content
              from
                cmt
              where
                exists
                (
                  select
                    post.id
                  from
                    post
                  where
                    post.id = cmt.id
                )
          ]]>
        </select>

    service

        @Override
        public List<Comment> selectTwoTable() {
            return sqlSession.selectList("comment.selectTowTable");
        }
    
        @Override
        public List<Comment> selectJoin() {
            return sqlSession.selectList("comment.selectJoin");
        }
    
        @Override
        public List<Comment> selectIn() {
           return sqlSession.selectList("comment.selectIn");
        }
    
        @Override
        public List<Comment> selectExists() {
            return sqlSession.selectList("comment.selectExists");
        }
    
        @Override
        public List<Comment> selectAll() {
            return sqlSession.selectList("comment.selectAll");
        }

    test case

        /**
         * 测试JOIN查询效率
         *
         */
        @Test
        public void testJoinSelect() {
            // join 查询
            long start = System.nanoTime();
            List<Comment> list = commentService.selectJoin();
            double duration = System.nanoTime() - start;
            System.out.format("join select: %.2f
    ", duration / 1.0e9);
            System.out.println("list size: " + list.size());
    
            // From 两个表查询
            start = System.nanoTime();
            list = commentService.selectTwoTable();
            duration = System.nanoTime() - start;
            System.out.format("2 table select: %.2f
    ", duration / 1.0e9);
            System.out.println("list size: " + list.size());
    
            // in多表查询
            start = System.nanoTime();
            list = commentService.selectIn();
            duration = System.nanoTime() - start;
            System.out.format("in multi table select: %.2f
    ", duration / 1.0e9);
            System.out.println("list size: " + list.size());
    
            // exists多表查询
            start = System.nanoTime();
            list = commentService.selectExists();
            duration = System.nanoTime() - start;
            System.out.format("exists multi table select: %.2f
    ", duration / 1.0e9);
            System.out.println("list size: " + list.size());
    
            // 分次查询, 太慢了, 忽略这种方法的测试吧
    //        start = System.nanoTime();
    //        list = commentService.selectAll();
    //        for (Comment comment : list) {
    //            postService.selectById(comment.getPostId());
    //        }
    //        duration = System.nanoTime() - start;
    //        System.out.format("separate select: %.2f
    ", duration / 1.0e9);
    //        System.out.println("list size: " + list.size());
        }

    结果

    join select: 2.44
    list size: 210000
    2 table select: 2.26
    list size: 210000
    in multi table select: 2.03
    list size: 210000
    exists multi table select: 2.35
    list size: 210000

    总结:

    21W条数据下效率都差不多,而且我们一般会使用limit去限制查询的条数,所以应该他们的效率差距应该很小,我通过观察explain发现实际上join和from 2个table的方式的查询的执行计划是一模一样的,而in和exists的执行计划也是一模一样的

    这里的表结构相对简单,也基本能用上索引 post_id 和 post.id 这些primary, 具体更加复杂的情况也许会影响这几种查询方式的执行计划, 才会体现出他们直接的差距, 当然我也相信他们执行的效率很大程度上是决定于mysql的优化器的优化策略,而这个优化策略很难人为的去判断,所以也不好说

  • 相关阅读:
    Android——编译odex保护
    【深入JVM内核—原理、诊断与优化】第2期开课了
    17周(引用做形參 )
    虚拟机设备直通的两种方式(Working in Progress)
    UVa 10256 The Great Divide,推断两个凸包是否相离
    awk 传入外部参数
    shell/bash 让vi/vim显示空格,及tab字符
    shell/bash 交集、并集、差集
    Windows XP搜索功能 "包含文字" 搜索不到内容的解决办法
    C语言字符串查找函数
  • 原文地址:https://www.cnblogs.com/zemliu/p/3283965.html
Copyright © 2020-2023  润新知