• ThreadPoolExecutor使用详解


    ThreadPoolExecutor机制 

    一、概述 
    1、ThreadPoolExecutor作为java.util.concurrent包对外提供基础实现,以内部线程池的形式对外提供管理任务执行,线程调度,线程池管理等等服务; 
    2、Executors方法提供的线程服务,都是通过参数设置来实现不同的线程池机制。 
    3、先来了解其线程池管理的机制,有助于正确使用,避免错误使用导致严重故障。同时可以根据自己的需求实现自己的线程池
     

    二、核心构造方法讲解 
    下面是ThreadPoolExecutor最核心的构造方法 

    构造方法参数讲解 
    参数名 作用
    corePoolSize 核心线程池大小
    maximumPoolSize 最大线程池大小
    keepAliveTime 线程池中超过corePoolSize数目的空闲线程最大存活时间;可以allowCoreThreadTimeOut(true)使得核心线程有效时间
    TimeUnit keepAliveTime时间单位
    workQueue 阻塞任务队列
    threadFactory 新建线程工厂
    RejectedExecutionHandler 当提交任务数超过maxmumPoolSize+workQueue之和时,任务会交给RejectedExecutionHandler来处理


    重点讲解: 
    其中比较容易让人误解的是:corePoolSize,maximumPoolSize,workQueue之间关系。 

    1.当线程池小于corePoolSize时,新提交任务将创建一个新线程执行任务,即使此时线程池中存在空闲线程。 
    2.当线程池达到corePoolSize时,新提交任务将被放入workQueue中,等待线程池中任务调度执行 
    3.当workQueue已满,且maximumPoolSize>corePoolSize时,新提交任务会创建新线程执行任务 
    4.当提交任务数超过maximumPoolSize时,新提交任务由RejectedExecutionHandler处理 
    5.当线程池中超过corePoolSize线程,空闲时间达到keepAliveTime时,关闭空闲线程 
    6.当设置allowCoreThreadTimeOut(true)时,线程池中corePoolSize线程空闲时间达到keepAliveTime也将关闭 

    线程管理机制图示: 


    三、Executors提供的线程池配置方案 

    1、构造一个固定线程数目的线程池,配置的corePoolSize与maximumPoolSize大小相同,同时使用了一个无界LinkedBlockingQueue存放阻塞任务,因此多余的任务将存在再阻塞队列,不会由RejectedExecutionHandler处理 
    public static ExecutorService newFixedThreadPool(int nThreads) {
            return new ThreadPoolExecutor(nThreads, nThreads,
                                          0L, TimeUnit.MILLISECONDS,
                                          new LinkedBlockingQueue<Runnable>());
        }

    2、构造一个缓冲功能的线程池,配置corePoolSize=0,maximumPoolSize=Integer.MAX_VALUE,keepAliveTime=60s,以及一个无容量的阻塞队列 SynchronousQueue,因此任务提交之后,将会创建新的线程执行;线程空闲超过60s将会销毁 
    public static ExecutorService newCachedThreadPool() {
            return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                          60L, TimeUnit.SECONDS,
                                          new SynchronousQueue<Runnable>());
        }

    3、构造一个只支持一个线程的线程池,配置corePoolSize=maximumPoolSize=1,无界阻塞队列LinkedBlockingQueue;保证任务由一个线程串行执行 
    public static ExecutorService newSingleThreadExecutor() {
            return new FinalizableDelegatedExecutorService
                (new ThreadPoolExecutor(1, 1,
                                        0L, TimeUnit.MILLISECONDS,
                                        new LinkedBlockingQueue<Runnable>()));
        }

    4、构造有定时功能的线程池,配置corePoolSize,无界延迟阻塞队列DelayedWorkQueue;有意思的是:maximumPoolSize=Integer.MAX_VALUE,由于DelayedWorkQueue是无界队列,所以这个值是没有意义的 
    public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
            return new ScheduledThreadPoolExecutor(corePoolSize);
        }
    
    public static ScheduledExecutorService newScheduledThreadPool(
                int corePoolSize, ThreadFactory threadFactory) {
            return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
        }
    
    public ScheduledThreadPoolExecutor(int corePoolSize,
                                 ThreadFactory threadFactory) {
            super(corePoolSize, Integer.MAX_VALUE, 0, TimeUnit.NANOSECONDS,
                  new DelayedWorkQueue(), threadFactory);
        }


    四、定制属于自己的非阻塞线程池 
    import java.util.concurrent.ArrayBlockingQueue;
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.RejectedExecutionHandler;
    import java.util.concurrent.ThreadFactory;
    import java.util.concurrent.ThreadPoolExecutor;
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicInteger;
    
    
    public class CustomThreadPoolExecutor {
    
    	
    	private ThreadPoolExecutor pool = null;
    	
    	
    	/**
    	 * 线程池初始化方法
    	 * 
    	 * corePoolSize 核心线程池大小----10
    	 * maximumPoolSize 最大线程池大小----30
    	 * keepAliveTime 线程池中超过corePoolSize数目的空闲线程最大存活时间----30+单位TimeUnit
    	 * TimeUnit keepAliveTime时间单位----TimeUnit.MINUTES
    	 * workQueue 阻塞队列----new ArrayBlockingQueue<Runnable>(10)====10容量的阻塞队列
    	 * threadFactory 新建线程工厂----new CustomThreadFactory()====定制的线程工厂
    	 * rejectedExecutionHandler 当提交任务数超过maxmumPoolSize+workQueue之和时,
    	 * 							即当提交第41个任务时(前面线程都没有执行完,此测试方法中用sleep(100)),
    	 * 						          任务会交给RejectedExecutionHandler来处理
    	 */
    	public void init() {
    		pool = new ThreadPoolExecutor(
    				10,
    				30,
    				30,
    				TimeUnit.MINUTES,
    				new ArrayBlockingQueue<Runnable>(10),
    				new CustomThreadFactory(),
    				new CustomRejectedExecutionHandler());
    	}
    
    	
    	public void destory() {
    		if(pool != null) {
    			pool.shutdownNow();
    		}
    	}
    	
    	
    	public ExecutorService getCustomThreadPoolExecutor() {
    		return this.pool;
    	}
    	
    	private class CustomThreadFactory implements ThreadFactory {
    
    		private AtomicInteger count = new AtomicInteger(0);
    		
    		@Override
    		public Thread newThread(Runnable r) {
    			Thread t = new Thread(r);
    			String threadName = CustomThreadPoolExecutor.class.getSimpleName() + count.addAndGet(1);
    			System.out.println(threadName);
    			t.setName(threadName);
    			return t;
    		}
    	}
    	
    	
    	private class CustomRejectedExecutionHandler implements RejectedExecutionHandler {
    
    		@Override
    		public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
    			// 记录异常
    			// 报警处理等
    			System.out.println("error.............");
    		}
    	}
    	
    	
    	
    	// 测试构造的线程池
    	public static void main(String[] args) {
    		CustomThreadPoolExecutor exec = new CustomThreadPoolExecutor();
    		// 1.初始化
    		exec.init();
    		
    		ExecutorService pool = exec.getCustomThreadPoolExecutor();
    		for(int i=1; i<100; i++) {
    			System.out.println("提交第" + i + "个任务!");
    			pool.execute(new Runnable() {
    				@Override
    				public void run() {
    					try {
    						Thread.sleep(3000);
    					} catch (InterruptedException e) {
    						e.printStackTrace();
    					}
    					System.out.println("running=====");
    				}
    			});
    		}
    		
    		
    		
    		// 2.销毁----此处不能销毁,因为任务没有提交执行完,如果销毁线程池,任务也就无法执行了
    		// exec.destory();
    		
    		try {
    			Thread.sleep(10000);
    		} catch (InterruptedException e) {
    			e.printStackTrace();
    		}
    	}
    }

    方法中建立一个核心线程数为30个,缓冲队列有10个的线程池。每个线程任务,执行时会先睡眠3秒,保证提交10任务时,线程数目被占用完,再提交30任务时,阻塞队列被占用完,,这样提交第41个任务是,会交给CustomRejectedExecutionHandler 异常处理类来处理。 

    提交任务的代码如下: 
    public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
            /*
             * Proceed in 3 steps:
             *
             * 1. If fewer than corePoolSize threads are running, try to
             * start a new thread with the given command as its first
             * task.  The call to addWorker atomically checks runState and
             * workerCount, and so prevents false alarms that would add
             * threads when it shouldn't, by returning false.
             *
             * 2. If a task can be successfully queued, then we still need
             * to double-check whether we should have added a thread
             * (because existing ones died since last checking) or that
             * the pool shut down since entry into this method. So we
             * recheck state and if necessary roll back the enqueuing if
             * stopped, or start a new thread if there are none.
             *
             * 3. If we cannot queue task, then we try to add a new
             * thread.  If it fails, we know we are shut down or saturated
             * and so reject the task.
             */
            int c = ctl.get();
            if (workerCountOf(c) < corePoolSize) {
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))
                reject(command);
        }
    

    注意:41以后提交的任务就不能正常处理了,因为,execute中提交到任务队列是用的offer方法,如上面代码,这个方法是非阻塞的,所以就会交给CustomRejectedExecutionHandler 来处理,所以对于大数据量的任务来说,这种线程池,如果不设置队列长度会OOM,设置队列长度,会有任务得不到处理,接下来我们构建一个阻塞的自定义线程池 

    五、定制属于自己的阻塞线程池 
    package com.tongbanjie.trade.test.commons;
    
    import java.util.concurrent.ArrayBlockingQueue;
    import java.util.concurrent.ExecutorService;
    import java.util.concurrent.RejectedExecutionHandler;
    import java.util.concurrent.ThreadFactory;
    import java.util.concurrent.ThreadPoolExecutor;
    import java.util.concurrent.TimeUnit;
    import java.util.concurrent.atomic.AtomicInteger;
    
    public class CustomThreadPoolExecutor {  
    	  
          
        private ThreadPoolExecutor pool = null;  
          
          
        /** 
         * 线程池初始化方法 
         *  
         * corePoolSize 核心线程池大小----1 
         * maximumPoolSize 最大线程池大小----3 
         * keepAliveTime 线程池中超过corePoolSize数目的空闲线程最大存活时间----30+单位TimeUnit 
         * TimeUnit keepAliveTime时间单位----TimeUnit.MINUTES 
         * workQueue 阻塞队列----new ArrayBlockingQueue<Runnable>(5)====5容量的阻塞队列 
         * threadFactory 新建线程工厂----new CustomThreadFactory()====定制的线程工厂 
         * rejectedExecutionHandler 当提交任务数超过maxmumPoolSize+workQueue之和时, 
         *                          即当提交第41个任务时(前面线程都没有执行完,此测试方法中用sleep(100)), 
         *                                任务会交给RejectedExecutionHandler来处理 
         */  
        public void init() {  
            pool = new ThreadPoolExecutor(  
                    1,  
                    3,  
                    30,  
                    TimeUnit.MINUTES,  
                    new ArrayBlockingQueue<Runnable>(5),  
                    new CustomThreadFactory(),  
                    new CustomRejectedExecutionHandler());  
        }  
      
          
        public void destory() {  
            if(pool != null) {  
                pool.shutdownNow();  
            }  
        }  
          
          
        public ExecutorService getCustomThreadPoolExecutor() {  
            return this.pool;  
        }  
          
        private class CustomThreadFactory implements ThreadFactory {  
      
            private AtomicInteger count = new AtomicInteger(0);  
              
            @Override  
            public Thread newThread(Runnable r) {  
                Thread t = new Thread(r);  
                String threadName = CustomThreadPoolExecutor.class.getSimpleName() + count.addAndGet(1);  
                System.out.println(threadName);  
                t.setName(threadName);  
                return t;  
            }  
        }  
          
          
        private class CustomRejectedExecutionHandler implements RejectedExecutionHandler {  
      
            @Override  
            public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {  
            	try {
                                    // 核心改造点,由blockingqueue的offer改成put阻塞方法
    				executor.getQueue().put(r);
    			} catch (InterruptedException e) {
    				e.printStackTrace();
    			}
            }  
        }  
          
          
          
        // 测试构造的线程池  
        public static void main(String[] args) {  
        	
            CustomThreadPoolExecutor exec = new CustomThreadPoolExecutor();  
            // 1.初始化  
            exec.init();  
              
            ExecutorService pool = exec.getCustomThreadPoolExecutor();  
            for(int i=1; i<100; i++) {  
                System.out.println("提交第" + i + "个任务!");  
                pool.execute(new Runnable() {  
                    @Override  
                    public void run() {  
                        try {  
                        	System.out.println(">>>task is running====="); 
                            TimeUnit.SECONDS.sleep(10);
                        } catch (InterruptedException e) {  
                            e.printStackTrace();  
                        }  
                    }  
                });  
            }  
              
              
            // 2.销毁----此处不能销毁,因为任务没有提交执行完,如果销毁线程池,任务也就无法执行了  
            // exec.destory();  
              
            try {  
                Thread.sleep(10000);  
            } catch (InterruptedException e) {  
                e.printStackTrace();  
            }  
        }  
    }  


    解释:当提交任务被拒绝时,进入拒绝机制,我们实现拒绝方法,把任务重新用阻塞提交方法put提交,实现阻塞提交任务功能,防止队列过大,OOM,提交被拒绝方法在下面 

       
    public void execute(Runnable command) {
            if (command == null)
                throw new NullPointerException();
    
            int c = ctl.get();
            if (workerCountOf(c) < corePoolSize) {
                if (addWorker(command, true))
                    return;
                c = ctl.get();
            }
            if (isRunning(c) && workQueue.offer(command)) {
                int recheck = ctl.get();
                if (! isRunning(recheck) && remove(command))
                    reject(command);
                else if (workerCountOf(recheck) == 0)
                    addWorker(null, false);
            }
            else if (!addWorker(command, false))
                // 进入拒绝机制, 我们把runnable任务拿出来,重新用阻塞操作put,来实现提交阻塞功能
                reject(command);
        }



    总结: 
    1、用ThreadPoolExecutor自定义线程池,看线程是的用途,如果任务量不大,可以用无界队列,如果任务量非常大,要用有界队列,防止OOM 
    2、如果任务量很大,还要求每个任务都处理成功,要对提交的任务进行阻塞提交,重写拒绝机制,改为阻塞提交。保证不抛弃一个任务 
    3、最大线程数一般设为2N+1最好,N是CPU核数 
    4、核心线程数,看应用,如果是任务,一天跑一次,设置为0,合适,因为跑完就停掉了,如果是常用线程池,看任务量,是保留一个核心还是几个核心线程数 
    5、如果要获取任务执行结果,用CompletionService,但是注意,获取任务的结果的要重新开一个线程获取,如果在主线程获取,就要等任务都提交后才获取,就会阻塞大量任务结果,队列过大OOM,所以最好异步开个线程获取结果
  • 相关阅读:
    XtraGrid回车添加行,
    此行属于此表解决方案
    实践重于理论——创建一个监控程序探测WCF的并发处理机制
    使用SerialPort类设计串口通讯程序 (VS2005)[转载]
    WCF实例上下文基本内容概述
    DotNetBar教程
    MSChart使用做折线图饼图
    WCF Data Contract之KnownType
    WCF学习笔记之 搭建WCF技术知识框架
    C# SerialPort运行方式
  • 原文地址:https://www.cnblogs.com/zedosu/p/6665306.html
Copyright © 2020-2023  润新知