3028: 食物
Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 735 Solved: 514
[Submit][Status][Discuss]
Description
明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险!我们暂且不讨论他有多么NC,他又幻想了他应
该带一些什么东西。理所当然的,你当然要帮他计算携带N件物品的方案数。他这次又准备带一些受欢迎的食物,
如:蜜桃多啦,鸡块啦,承德汉堡等等当然,他又有一些稀奇古怪的限制:每种食物的限制如下:
承德汉堡:偶数个
可乐:0个或1个
鸡腿:0个,1个或2个
蜜桃多:奇数个
鸡块:4的倍数个
包子:0个,1个,2个或3个
土豆片炒肉:不超过一个。
面包:3的倍数个
注意,这里我们懒得考虑明明对于带的食物该怎么搭配着吃,也认为每种食物都是以‘个’为单位(反正是幻想嘛
),只要总数加起来是N就算一种方案。因此,对于给出的N,你需要计算出方案数,并对10007取模。
Input
输入一个数字N,1<=n<=10^500
Sample Input
输入样例1
1
输入样例2
5
1
输入样例2
5
Sample Output
输出样例1
1
输出样例2
35
1
输出样例2
35
分析:生成函数的裸题.
现将每一个式子化成分式,相乘后能消掉很多项. 最后将式子展开看其组合意义即可.
(1 + x + x^2 + x^3 +......)^n中x^p前系数的组合意义是将p拆分成若干个非负整数相加的方案数. 利用隔板法求解即可.
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; const int mod = 10007; char s[1010]; int n; int main() { scanf("%s",s + 1); int t; for (int i = 1; i <= strlen(s + 1); i++) { if (i == 1) t = s[i] - '0'; else t = (t * 10 % mod + s[i] - '0') % mod; } n = t; printf("%d ",n * (n + 1) % mod * (n + 2) % mod * 1668 % mod); return 0; }