题目链接:https://vjudge.net/problem/POJ-3352
题目大意
给定一个无向图,问至少添加多少条边,能使无向图变成边双连通图(任意两个节点中,存在两条以上的路径,且路径上的边互不重复)。
分析
Tarjan 算法求度为 1 的 e-DCC(边双连通分量) 的模板题。
先进行缩点,缩完之后所有的 e-DCC 形成一棵树,然后统计度为 1 的 e-DCC 个数,设为 k,答案就为$frac{k + 1}{2}$。
这是因为,如果给两个叶子节点连上线,那么这两个点除了经由根节点相连这条路,又加上直连这条路(产生了回路),如此一来就有 2 条不同的路了,然后既然叶子结点如此,那么叶子结点的父节点也就顺道解决了。因此,只要给叶节点连线即可,最后分奇偶讨论一下。
代码如下
1 #include <cmath> 2 #include <ctime> 3 #include <iostream> 4 #include <string> 5 #include <vector> 6 #include <cstdio> 7 #include <cstdlib> 8 #include <cstring> 9 #include <queue> 10 #include <map> 11 #include <set> 12 #include <algorithm> 13 #include <cctype> 14 #include <stack> 15 #include <deque> 16 #include <list> 17 #include <sstream> 18 #include <cassert> 19 using namespace std; 20 21 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 22 #define Rep(i,n) for (int i = 0; i < (n); ++i) 23 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 24 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 25 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 26 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 27 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 28 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 29 30 #define pr(x) cout << #x << " = " << x << " " 31 #define prln(x) cout << #x << " = " << x << endl 32 33 #define LOWBIT(x) ((x)&(-x)) 34 35 #define ALL(x) x.begin(),x.end() 36 #define INS(x) inserter(x,x.begin()) 37 #define UNIQUE(x) x.erase(unique(x.begin(), x.end()), x.end()) 38 #define REMOVE(x, c) x.erase(remove(x.begin(), x.end(), c), x.end()); // 删去 x 中所有 c 39 #define TOLOWER(x) transform(x.begin(), x.end(), x.begin(),::tolower); 40 #define TOUPPER(x) transform(x.begin(), x.end(), x.begin(),::toupper); 41 42 #define ms0(a) memset(a,0,sizeof(a)) 43 #define msI(a) memset(a,inf,sizeof(a)) 44 #define msM(a) memset(a,-1,sizeof(a)) 45 46 #define MP make_pair 47 #define PB push_back 48 #define ft first 49 #define sd second 50 51 template<typename T1, typename T2> 52 istream &operator>>(istream &in, pair<T1, T2> &p) { 53 in >> p.first >> p.second; 54 return in; 55 } 56 57 template<typename T> 58 istream &operator>>(istream &in, vector<T> &v) { 59 for (auto &x: v) 60 in >> x; 61 return in; 62 } 63 64 template<typename T1, typename T2> 65 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 66 out << "[" << p.first << ", " << p.second << "]" << " "; 67 return out; 68 } 69 70 inline int gc(){ 71 static const int BUF = 1e7; 72 static char buf[BUF], *bg = buf + BUF, *ed = bg; 73 74 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 75 return *bg++; 76 } 77 78 inline int ri(){ 79 int x = 0, f = 1, c = gc(); 80 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 81 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 82 return x*f; 83 } 84 85 template<class T> 86 inline string toString(T x) { 87 ostringstream sout; 88 sout << x; 89 return sout.str(); 90 } 91 92 inline int toInt(string s) { 93 int v; 94 istringstream sin(s); 95 sin >> v; 96 return v; 97 } 98 99 //min <= aim <= max 100 template<typename T> 101 inline bool BETWEEN(const T aim, const T min, const T max) { 102 return min <= aim && aim <= max; 103 } 104 105 typedef long long LL; 106 typedef unsigned long long uLL; 107 typedef pair< double, double > PDD; 108 typedef pair< int, int > PII; 109 typedef pair< int, PII > PIPII; 110 typedef pair< string, int > PSI; 111 typedef pair< int, PSI > PIPSI; 112 typedef set< int > SI; 113 typedef set< PII > SPII; 114 typedef vector< int > VI; 115 typedef vector< double > VD; 116 typedef vector< VI > VVI; 117 typedef vector< SI > VSI; 118 typedef vector< PII > VPII; 119 typedef map< int, int > MII; 120 typedef map< LL, int > MLLI; 121 typedef map< int, string > MIS; 122 typedef map< int, PII > MIPII; 123 typedef map< PII, int > MPIII; 124 typedef map< string, int > MSI; 125 typedef map< string, string > MSS; 126 typedef map< PII, string > MPIIS; 127 typedef map< PII, PII > MPIIPII; 128 typedef multimap< int, int > MMII; 129 typedef multimap< string, int > MMSI; 130 //typedef unordered_map< int, int > uMII; 131 typedef pair< LL, LL > PLL; 132 typedef vector< LL > VL; 133 typedef vector< VL > VVL; 134 typedef priority_queue< int > PQIMax; 135 typedef priority_queue< int, VI, greater< int > > PQIMin; 136 const double EPS = 1e-8; 137 const LL inf = 0x3fffffff; 138 const LL infLL = 0x3fffffffffffffffLL; 139 const LL mod = 20100713; 140 const int maxN = 1e3 + 7; 141 const LL ONE = 1; 142 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 143 const LL oddBits = 0x5555555555555555; 144 145 struct Edge{ 146 int from, to; 147 148 Edge() {} 149 Edge(int x, int y) : from(x), to(y) {} 150 }; 151 152 istream& operator>> (istream& in, Edge &x) { 153 in >> x.from >> x.to; 154 return in; 155 } 156 157 int N, M, ans; 158 VI V[maxN]; 159 vector< Edge > E; 160 161 void addEdge(Edge &x) { 162 V[x.from].PB(E.size()); 163 E.PB(x); 164 } 165 166 stack< int > sk; // 递归处理 SCC (强连通分量) 167 bool insk[maxN]; // 是否在栈中 168 169 int scc[maxN], sccid; // 存每个点对应SCC的编号 170 int in[maxN], out[maxN]; // SCC的入度与出度 171 172 int Time; 173 int tp[maxN]; // timestamp,时间戳 174 int facr[maxN]; // The farthest ancestor that can be reached,每个节点最远的返回的祖先 175 // S :当前节点号 176 // 划分SCC并缩点 177 void Tarjan(int S, int fa) { 178 tp[S] = facr[S] = ++Time; 179 sk.push(S); 180 insk[S] = 1; 181 182 Rep(i, V[S].size()) { 183 Edge &e = E[V[S][i]]; 184 if(e.to == fa) continue; 185 186 if(!tp[e.to]) { 187 Tarjan(e.to, S); 188 facr[S] = min(facr[S], facr[e.to]); 189 } 190 else if(insk[e.to]) facr[S] = min(facr[S], tp[e.to]); // 必须要保证在栈中,不然不能保证是一块SCC 191 } 192 193 if(facr[S] == tp[S]) { 194 ++sccid; 195 while(!sk.empty()) { 196 int tmp = sk.top(); sk.pop(); 197 198 insk[tmp] = 0; 199 scc[tmp] = sccid; 200 if(tmp == S) break; 201 } 202 } 203 } 204 205 void init() { 206 For(i, 1, N) V[i].clear(); 207 E.clear(); 208 ans = 0; 209 210 while(!sk.empty()) sk.pop(); 211 ms0(insk); 212 213 ms0(scc); sccid = 0; 214 //ms0(in); 215 ms0(out); 216 217 Time = 0; 218 ms0(tp); 219 ms0(facr); 220 } 221 222 int main(){ 223 //freopen("MyOutput.txt","w",stdout); 224 //freopen("input.txt","r",stdin); 225 INIT(); 226 while(cin >> N && N) { 227 //init(); 228 cin >> M; 229 For(i, 1, M) { 230 Edge t; 231 cin >> t; 232 addEdge(t); 233 swap(t.from, t.to); 234 addEdge(t); 235 } 236 237 For(i, 1, N) if(!tp[i]) Tarjan(i, 0); 238 239 For(i, 1, N) { 240 Rep(j, V[i].size()) { 241 Edge &e = E[V[i][j]]; 242 if(scc[e.from] != scc[e.to]) { 243 ++out[scc[e.from]]; 244 //++in[scc[e.to]]; 245 } 246 } 247 } 248 249 For(i, 1, sccid) if(out[i] == 1) ++ans; // 因为加了回边,所以只要判断入度或出度 250 251 cout << ((ans + 1) >> 1) << endl; 252 } 253 return 0; 254 }