题目链接:https://vjudge.net/problem/UVA-11809
题目翻译摘自《算法禁赛入门经典》
题目大意
计算机常用阶码-尾数的方法保存浮点数。如图所示,如果阶码有 6 位,尾数有 8 位, 可以表达的最大浮点数为$0.111111111_2 * 2^{111111_2}$。注意小数点后第一位必须为 1,所以一共有 9 位小数。
这个数换算成十进制之后就是$0.998046875 * 2^{63} = 9.205357638345294 * 10^{18}$。你的任务是根据这个最大浮点数,求出阶码的位数 E 和尾数的位数 M。输入格式为 AeB,表示最大浮点数为$A * 10^B$。$0 < A < 10$,并且恰好包含 15 位有效数字。输入结束标志为 0e0。对于每组数据,输出 M 和 E。输入保证有唯一解,且$0 leq M leq 9,1 leq E leq 30$。在本题中,M + E + 2 不必为 8 的整数倍。
分析
设最大值为 v,则$v = (1 - frac{1}{2^{M + 1}}) * 2^{2^E - 1} = A * 10^B$。
两边求以 10 为底的对数可得$lg v = lg (2^{M + 1} - 1) - (M + 1) * lg 2 + (2^E - 1) * lg 2 = lg A + B$。
于是可以暴力枚举所有 M,算出 E 后再带回去检验误差。
此题的 EPS 选取有讲究,不能太大,可不能太小,10e-6 就差不多了,不然会 Wa。
代码如下
1 #include <bits/stdc++.h> 2 using namespace std; 3 4 #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); 5 #define Rep(i,n) for (int i = 0; i < (n); ++i) 6 #define For(i,s,t) for (int i = (s); i <= (t); ++i) 7 #define rFor(i,t,s) for (int i = (t); i >= (s); --i) 8 #define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i) 9 #define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i) 10 #define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i) 11 #define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) 12 13 #define pr(x) cout << #x << " = " << x << " " 14 #define prln(x) cout << #x << " = " << x << endl 15 16 #define LOWBIT(x) ((x)&(-x)) 17 18 #define ALL(x) x.begin(),x.end() 19 #define INS(x) inserter(x,x.begin()) 20 21 #define ms0(a) memset(a,0,sizeof(a)) 22 #define msI(a) memset(a,inf,sizeof(a)) 23 #define msM(a) memset(a,-1,sizeof(a)) 24 25 #define MP make_pair 26 #define PB push_back 27 #define ft first 28 #define sd second 29 30 template<typename T1, typename T2> 31 istream &operator>>(istream &in, pair<T1, T2> &p) { 32 in >> p.first >> p.second; 33 return in; 34 } 35 36 template<typename T> 37 istream &operator>>(istream &in, vector<T> &v) { 38 for (auto &x: v) 39 in >> x; 40 return in; 41 } 42 43 template<typename T1, typename T2> 44 ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) { 45 out << "[" << p.first << ", " << p.second << "]" << " "; 46 return out; 47 } 48 49 inline int gc(){ 50 static const int BUF = 1e7; 51 static char buf[BUF], *bg = buf + BUF, *ed = bg; 52 53 if(bg == ed) fread(bg = buf, 1, BUF, stdin); 54 return *bg++; 55 } 56 57 inline int ri(){ 58 int x = 0, f = 1, c = gc(); 59 for(; c<48||c>57; f = c=='-'?-1:f, c=gc()); 60 for(; c>47&&c<58; x = x*10 + c - 48, c=gc()); 61 return x*f; 62 } 63 64 typedef long long LL; 65 typedef unsigned long long uLL; 66 typedef pair< double, double > PDD; 67 typedef pair< int, int > PII; 68 typedef pair< int, PII > PIPII; 69 typedef pair< string, int > PSI; 70 typedef pair< int, PSI > PIPSI; 71 typedef set< int > SI; 72 typedef set< PII > SPII; 73 typedef vector< int > VI; 74 typedef vector< VI > VVI; 75 typedef vector< PII > VPII; 76 typedef map< int, int > MII; 77 typedef map< int, PII > MIPII; 78 typedef map< PII, int > MPIII; 79 typedef map< string, int > MSI; 80 typedef multimap< int, int > MMII; 81 //typedef unordered_map< int, int > uMII; 82 typedef pair< LL, LL > PLL; 83 typedef vector< LL > VL; 84 typedef vector< VL > VVL; 85 typedef priority_queue< int > PQIMax; 86 typedef priority_queue< int, VI, greater< int > > PQIMin; 87 const double EPS = 1e-6; 88 const LL inf = 0x7fffffff; 89 const LL infLL = 0x7fffffffffffffffLL; 90 const LL mod = 1e9 + 7; 91 const int maxN = 1e4 + 7; 92 const LL ONE = 1; 93 const LL evenBits = 0xaaaaaaaaaaaaaaaa; 94 const LL oddBits = 0x5555555555555555; 95 96 int B, M, E; 97 double A; 98 string str; 99 100 int main(){ 101 //freopen("MyOutput.txt","w",stdout); 102 //freopen("input.txt","r",stdin); 103 INIT(); 104 while(getline(cin, str)) { 105 if(str == "0e0") break; 106 str[str.find('e')] = ' '; 107 stringstream sin(str); 108 sin >> A >> B; 109 double v = log10(A) + B; 110 111 For(x, 1, 10) { 112 double tmp = log10(pow(2, x) - 1) - (x + 1) * log10(2); 113 E = log2((v - tmp) / log10(2)) + EPS; 114 if(fabs(v - tmp - pow(2, E) * log10(2)) < EPS) { 115 M = x - 1; 116 break; 117 } 118 } 119 cout << M << " " << E << endl; 120 } 121 return 0; 122 }