• HDU 1007 Quoit Design(经典最近点对问题)


    传送门:

    http://acm.hdu.edu.cn/showproblem.php?pid=1007

    Quoit Design

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 62916    Accepted Submission(s): 16609


    Problem Description
    Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
    In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.

    Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.
     
    Input
    The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
     
    Output
    For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places.
     
    Sample Input
    2 0 0 1 1 2 1 1 1 1 3 -1.5 0 0 0 0 1.5 0
     
    Sample Output
    0.71 0.00 0.75
     
    Author
    CHEN, Yue
     
    Source
     
    题目意思:
    给你一个点的集合,问你距离最近的两个点的距离的一半是多少
    非常经典的最近点对问题
    第一次写
    还不是很理解呃
    分治
    code:
    #include<bits/stdc++.h>
    using namespace std;
    #define max_v 100005
    int n;
    struct node
    {
        double x,y;
    }p[max_v];
    int a[max_v];
    double cmpx(node a,node b)
    {
        return a.x<b.x;
    }
    double cmpy(int a,int b)
    {
        return p[a].y<p[b].y;
    }
    double min_f(double a,double b)
    {
        return a<b?a:b;
    }
    double dis(node a,node b)
    {
        return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
    }
    double slove(int l,int r)
    {
        if(r==l+1)
            return dis(p[l],p[r]);
        if(l+2==r)
            return min_f(dis(p[l],p[r]),min_f(dis(p[l],p[l+1]),dis(p[l+1],p[r])));
        int mid=(l+r)>>1;
        double ans=min_f(slove(l,mid),slove(mid+1,r));
        int i,j,cnt=0;
        for( i=l;i<=r;i++)
        {
            if(p[i].x>=p[mid].x-ans&&p[i].x<=p[mid].x+ans)
            {
                a[cnt++]=i;
            }
        }
        sort(a,a+cnt,cmpy);
        for(i=0;i<cnt;i++)
        {
            for(j=i+1;j<cnt;j++)
            {
                if(p[a[j]].y-p[a[i]].y>=ans)
                    break;
                ans=min_f(ans,dis(p[a[i]],p[a[j]]));
            }
        }
        return ans;
    }
    int main()
    {
        int i;
        while(~scanf("%d",&n))
        {
            if(n==0)
                break;
            for(i=0;i<n;i++)
            {
                scanf("%lf %lf",&p[i].x,&p[i].y);
            }
            sort(p,p+n,cmpx);
            printf("%0.2lf
    ",slove(0,n-1)/2.0);
        }
        return 0;
    }
  • 相关阅读:
    【分享】马化腾:产品设计与用户体验
    《JavaScript高级程序设计》读书笔记(八):Function类及闭包
    《JavaScript高级程序设计》阅读笔记(七):ECMAScript中的语句
    SET XACT_ABORT各种用法及显示结果
    发布一款域名监控小工具——Domain(IP)Watcher
    【转】C#正则表达式整理备忘
    《JavaScript高级程序设计》阅读笔记(一):ECMAScript基础
    Entity Framework多对多关系实践(manytomany)
    jQuery插件原来如此简单——jQuery插件的机制及实战
    《JavaScript高级程序设计》阅读笔记(二):ECMAScript中的原始类型
  • 原文地址:https://www.cnblogs.com/yinbiao/p/9296176.html
Copyright © 2020-2023  润新知