A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
题意:就是一个m*n的棋盘的上,从一个位置到另一位置的最短路径的个数。每次只能向下或向右走一步。
思路:
其实就是个高中的组合数学的问题。
m*n的棋盘,一共需要走(m-1)+(n-1)步,向右走m-1步,向下走n-1步,这(m-1)+(n-1)步中,只要确定了哪些步向右,即同时确定了哪些步向下走,反之亦然。
答案即C(m+n-2,m-1)或C(m+n-2,n-1)
Java代码如下:
1 public class Solution { 2 public int uniquePaths(int m, int n) { 3 double res = 1; 4 for (int i = 1; i <= n - 1; i++) 5 res *= ((double) (m + i - 1) / (double) i); 6 return (int) Math.round(res); 7 } 8 }
提交结果: