• JDK8 HashMap源码分析


    HashMap需要注意以下几方面

    (1) HasMap底层是用Node数组table存储数据, 它是采用懒加载的方式初始化的, 初始长度16, 加载因为0.75, 每次扩容2倍, 在扩容时,移动节点都是采用尾插法. 而JDK8之前都是采用的头插法(这里有个典型的问题,多线程可能死循环).

    (2) JDK8解决key的hash冲突采用的扰乱算法很简单,一次非一次位移,共两次.  而JDK8之前为解决这个问题共用了9次. 其原因是JDK8之前为了均推, JDK8无所谓了,反正底层是红黑树.

    (3) 当hash冲链表个数达到8个时,链表会转成红黑树.  而当红黑树的节点小于等于6个时,又会由树转成链表. 

       为啥链表个数是8时,由链表转树呢?

          因为根据泊松分布概率算出来,hash冲突8个时的概率是千万分之六, 如果是9个,概念会更低,千万分之一都不到.

          为啥6个时, 又会由树转链表呢?

          这可能是出于两方面的原因吧,如果是7,put,remove时,会造成一会儿树转表,一会表转树,影响性能. 另一方面链表长底为6时,查询最快为1,最慢为6, 平均一下3.5, 树节点为6时,运气不好也会查3次,感觉差不了多少,更重的是,链表插入快,树不行.

    (4)  树节点的顺序首先是通过hash值比较,记为dir, 如果dir <= 0 ,往左添加 ,否则往右添加.  如果通过hash比较不出key的大小来, 就会通过compareTo方法进行比较,得出dir值.

      

    1. putVal方法

    该方法主要做以下几件事:

    (1)  首先判断HashMap底层的table是否初始化,如果没有,就调用resize()方法进行初始化table操作. 注意resize方法即可以初始化table操作,也可以对table进行扩容 

    (2) 根据当前key的hash值和table的size值,计算key对应的valu值应该存储在table表中的下标值,记为i

    (3) 如果table[i]为空,就创建一个Node节点(节点封装了key,value相关的数据)存放在table[i]上

    (4) 如果table[i]已经有值了,我们将该值记为p,注意这个p肯定table表中的元素,同时也可能是链表中的头节点, 这又分成3种情况处理

      <1> 如果key与p节点的key完全相等,那就覆盖oldValue

      <2> 如果p是一颗树.....(跳过,没看懂)

      <3> 除去上面两种情况之外,P的屁股后面肯定挂着一个链表,  这就需要对链表中的每个元素进行遍历,判断当链表中的节点key与当前put的key是否相等,如果相等,也是将oldValue进行覆盖,否则就是new一个新的Node节点,然后挂在链表的屁股后面. 同时也会对这个链表的节点长度进行判断,如果超过8,则会调用treeifyBin方法,进行链表转树的操作

    (5) 源码

    /**
    *    Map put方法的实现
    */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        
        // 如果table是null,就是还没有初始化(jdk8中, table是在第一次使用的时候初始化的)
        if ((tab = table) == null || (n = tab.length) == 0)
            // resize()方法对table进行初始化或者2倍扩容
            n = (tab = resize()).length;
            
        // table的length减1与当前key的hash值的与运算,即是这个key在table中存储下标
        // & 运行, 二进制位数都是1结果才是1,否则是0
        // table中是否存储着当前key对应的value值
        if ((p = tab[i = (n - 1) & hash]) == null)  // 不存在这个key,如果存在,就挂链表
            // 创建一个新的Node,存储到table表中下标为i的slot位置
            tab[i] = newNode(hash, key, value, null);
       
       else {// 挂链表
            
            Node<K,V> e; K k;
            
            // 1. 对table中的数据进行覆盖判断,因为p是链表的头节点,是存放在table中的
            if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;  // 将覆盖前的p赋值给e, 注意:这儿并没有进行覆盖
                
            // 2. 处理树的情况(先跳过)
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            
            // 3. 链表的情况,有hash冲突的数据,直接挂在原节点的next上
            else {
                for (int binCount = 0; ; ++binCount) {
                
                    if ((e = p.next) == null) { 
                        // 将key,value封装成一个Node节点,然后挂在p的next上
                        p.next = newNode(hash, key, value, null);
                        
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            // 链表转树结构
                            treeifyBin(tab, hash);
                        break;
                    }
                
                    // 对链表节点中数据进行覆盖判断,注意前面有段相同的代码,那是对table中的数据(链表头节点)进行覆盖操作
                    if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) 
                        break;//  如果key相同,break跳出for循环,执行后面的逻辑
                    p = e;
                }
            }
            // 存在映射关系的key
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;  // 用新的value值去覆盖老的value值
                afterNodeAccess(e);
                return oldValue;  // 返回覆盖前的value值
            }
        }
        // 记录HashMap修改的次数
        ++modCount;
        // 记录key-value映射的次数,相当于HashMap的size
        if (++size > threshold)  // 如果size大于threshold,就需要进行扩容
            resize();
        // 移除更老的数据, 这里暂时不看
        afterNodeInsertion(evict);
        return null; // 返回null
    }

    2. resize方法

      该方法有两个作用,一是对table进行初始化操作,一是对table进行扩容操作. 原则上每次扩容2倍.  这个方法的重点是看它如何将oldTab中的元素转移到newTab中去的.

      源码使用了for循环,遍历出oldTab中的每一个元素,我们记为e, 然后再对e的相关属性进行判断, 同样分为3种情况

    (1) 如果e.next==null, 表明e节点屁股后面即没跟树,也没跟链表,即是e.key无hash冲突的情况. 这样情况最简单, 通过计算e.hash值然后& 扩容后的table长度,即为e在newTab中的存放位置

    (2) e节点就是一颗树的情况, 跳过

    (3) e屁股后面挂着链表的情况,也没看太懂

      源码显示,通过 e.hash & oldCap 将e屁股后面挂的链表拆分成了两个链表, 然后将这两个新的链表分析挂在newTab的两个槽位上. 这儿比较神奇,原本处于同一个链表结构的数据(oldTab),有hash冲突, 现在通过扩容,挂在了newTab的两个槽位上,表明这两个槽位的中key不存在hash冲突了, 这是不是从侧面说明了,扩容减少了hash冲突的机率.

    源码

    // 对HashMap底层table进行初始化或者扩容
    final Node<K,V>[] resize() {
        // 1. 将原先的table赋值给变量oldTab
        Node<K,V>[] oldTab = table;
        // oldTab的容量值,即原table中有多少个元素
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        //  原先扩容的阈值
        int oldThr = threshold;
        // 定义了两个变量,新的table的容量和阈值
        int newCap, newThr = 0;
        if (oldCap > 0) { // 表示原table中有元素
            if (oldCap >= MAXIMUM_CAPACITY) {  // 如果原来table(扩容前)的元素个数大于等于 1073741824
                threshold = Integer.MAX_VALUE;  // 直接将阈值设置为Integer的Max_VALUE值
                return oldTab;
            }
            // newCap在 oldCap的基础扩容1倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        
        
        // 这儿就是第一次使用时,对table进行初始化
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab; // 将初始化的这个newTab赋值到table
        
        
        
        // 下面应该是重点: 扩容(将扩容前table中的元素移动到扩容后的table中去).   如果是初始化, 不会进入if条件里面去
        if (oldTab != null) {
            // 通过for循环遍历取出扩容前table中的每个元素
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                 // 只对非空元素进行处理
                if ((e = oldTab[j]) != null) {   // 将oldTab中的j号位置的元素取出来赋值给e这个变量
                    oldTab[j] = null;    // 将oldTab中j号位置置空
                    
                    // 下面这段逻辑就是将扩容前table中的元素移动到扩容后table, 具体分为3种情况
                    //1 . 第一种情况,也是最简单的, 无hash冲突,也就是说无链表
                    if (e.next == null) 
                        newTab[e.hash & (newCap - 1)] = e;  // 将e这个元素放到newTab(扩容后的table)的  e.hash & (newCap - 1) 这个位置
                    
                    // 有hash冲突,并且后面的链表已经转成了红黑树
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    
                    // 有hash冲突,但后边还是链表
                    else { 
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        
                        // 这个do...while循环将oldTab[j]元素后面链表中的节点分别挂在两个链表上,一个是lo...., 一个是hi...., 
                        // 然后将lo,hi两个拆分出来的链表挂在扩容后的newTab的不同位置上
                        // <1> 原index   <2> 原index+oldTab的length
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) { // lo.. 链表
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            
                            }else {   // hi..链表
                                
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        
                        
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;  // 将lo链表挂到newTab[j]位置上
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;  // 将hi链表挂到newTab[j + oldCap]位置上
                        }
                    }
                }
            }
        }
        return newTab;
    }

    左旋分析

     // 左旋
            static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p) {
                // 忧伤, 读代码 r 节点是左旋的支撑点,
                TreeNode<K, V> r, pp, rl;
                if (p != null && (r = p.right) != null) {// 这一步,p的右节点是r, 这个r不就是前面的x吗
    
    
                    // 支撑节点的左子变成原父节点的右子树.
                    // 因为下面两行的功能对于下面的if...else if...else都适用,所以提到前面来了
                    if ((rl = p.right = r.left) != null)  // 如果等于,就说明当前添加节点无左子树
                        rl.parent = p;
    
    
                    // 下面三个条件一起看
                    if ((pp = r.parent = p.parent) == null) { // if情况,p是根节点(这种情况最简单)
                        (root = r).red = false;  // r成了根节点  ------------第一种情况
                    } else if (pp.left == p) {
                        pp.left = r;   // ------------第二种情况
                    } else {  // 这种情况应该是: p是pp的右子树
                        pp.right = r;  // ------------第三种情况
                    }
    
                    // 下面两句代码的意思就是: p成了r左子树
                    r.left = p;
                    p.parent = r;
                }
                return root;
            }

     

     

    右旋分析

     /**
             * 右旋 ,其实跟左旋是一样一样的道理,只是旋转的中心节点不同而已
             * @param root  根节点
             * @param p   其[实是当前节点的爷节点
             * @param <K>
             * @param <V>
             * @return
             */
            static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root, TreeNode<K, V> p) {
                TreeNode<K, V> l, pp, lr;
                if (p != null && (l = p.left) != null) {
                    // 将l的右子树移动到p的左子树位置 (右旋就是干这事嘛,)
                    if ((lr = p.left = l.right) != null)
                        lr.parent = p;
    
    
                    if ((pp = l.parent = p.parent) == null)  // p就是根节点
                        (root = l).red = false;
                    else if (pp.right == p)
                        pp.right = l;
                    else
                        pp.left = l;
                    l.right = p;
                    p.parent = l;
                }
                return root;
            }

    balanceInsertion方法代码分析示意图

     /**
             * 这个方法主要是在干变色的事, 并判断何时该旋转,
             * 而具体的旋转逻辑由 rotateLeft 和 rotateRight 两个方法完成
             *
             * @param root
             * @param x  刚添加到树上的节点
             * @param <K>
             * @param <V>
             * @return
             */
            static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root, TreeNode<K, V> x) {
                // 根据红黑树的性质,新添加的元素节点一定是红色
                x.red = true;
                /**
                 * xp : x节点的父节点
                 * xpp : x节点的父父节点,爷节点
                 * xppl : x爷节点左子节点
                 * xppr : x爷节点的右子节点
                 */
                // 又是一个无限循环
                for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) {
                    // 如果x节点的父节点是null,
                    if ((xp = x.parent) == null) {
                        // 那么x节点就会成为root节点,变黑色
                        x.red = false;
                        return x;
                    } else if (!xp.red || (xpp = xp.parent) == null)  // 如果x的父节点是黑色或者 x的爷爷节点是null
                        /*
                           如何理解?
                           !xp.red代码分析: x是新增量节点,肯定是红色,xp父节点不是红色, 所以肯定不需要变色,也不需要旋转, 红黑树是平衡的,直接返回root节点即可
                           (xpp = xp.parent) == null 分析: 爷节点是空,说明红黑树的深度为2. 所以无论x是添加到left ,还是right, 都是平衡的,直接返回root节点即可
    
                         */
                        return root;
    
                    /*
                     *如果代码执行到这儿,那么x一定有父节点和爷节点,且爷节点是黑,那么父节点就是红;
                     */
                    if (xp == (xppl = xpp.left)) { // xp在爷节点的左子树上
                        /*
                         *if的变色逻辑就是:
                         *  叔,父都是红色(由它可以推出爷是黑), 这时需要变色
                         *  叔,父由红变黑,爷由黑变红
                         *  只需变色即可重新自平衡
                         */
                        if ((xppr = xpp.right) != null && xppr.red) { // x的右叔是红
                            xppr.red = false;  //右叔变黑
                            xp.red = false; // 父变黑
                            xpp.red = true; // 爷由黑变红
                            x = xpp;  // 当前节点就变成爷节点了.
                        } else {
                            /**
                             * 进入这个else的条件有:
                             * 1. 右叔为空,无节点(这种情况如果存在,是单左旋)
                             * 2. 右叔存在,但是为黑色
                             */
                            if (x == xp.right) {// x在xp的右子树上
                                // 左旋(以父节点作为支点左旋,所以将xp赋值给x)
                                // 即然这儿发生左旋, 那么xp一定是红,右叔一定是黑...
                                root = rotateLeft(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;  // 这句代码的作用呢????????????
                            }
    
                            if (xp != null) {
                                // 这个判断是什么意思 ??????????
                                // 为什么再一次判断xp不为空???????
                                // 经历过rotateLeft之后的xp与未rotateLeft之前xp是同一个节点吗?????  答案肯定是!
                                xp.red = false;// 父黑
                                if (xpp != null) {
                                    xpp.red = true;  // 爷红
                                    root = rotateRight(root, xpp);
                                }
                            }
                        }
                    } else {
                        if (xppl != null && xppl.red) {
                            xppl.red = false;
                            xp.red = false;
                            xpp.red = true;
                            x = xpp;
                        } else {
                            if (x == xp.left) {
                                root = rotateRight(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            if (xp != null) {
                                xp.red = false;
                                if (xpp != null) {
                                    xpp.red = true;
                                    root = rotateLeft(root, xpp);
                                }
                            }
                        }
                    }
                }
            }

    补充HashMap类源码

    /*
     * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     *
     */
    
    package qinfeng.redblacktree;
    
    import sun.misc.SharedSecrets;
    
    import java.io.IOException;
    import java.io.InvalidObjectException;
    import java.io.Serializable;
    import java.lang.reflect.ParameterizedType;
    import java.lang.reflect.Type;
    import java.util.*;
    import java.util.function.BiConsumer;
    import java.util.function.BiFunction;
    import java.util.function.Consumer;
    import java.util.function.Function;
    
    /**
     * Hash table based implementation of the <tt>Map</tt> interface.  This
     * implementation provides all of the optional map operations, and permits
     * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
     * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
     * unsynchronized and permits nulls.)  This class makes no guarantees as to
     * the order of the map; in particular, it does not guarantee that the order
     * will remain constant over time.
     *
     * <p>This implementation provides constant-time performance for the basic
     * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
     * disperses the elements properly among the buckets.  Iteration over
     * collection views requires time proportional to the "capacity" of the
     * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
     * of key-value mappings).  Thus, it's very important not to set the initial
     * capacity too high (or the load factor too low) if iteration performance is
     * important.
     *
     * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
     * performance: <i>initial capacity</i> and <i>load factor</i>.  The
     * <i>capacity</i> is the number of buckets in the hash table, and the initial
     * capacity is simply the capacity at the time the hash table is created.  The
     * <i>load factor</i> is a measure of how full the hash table is allowed to
     * get before its capacity is automatically increased.  When the number of
     * entries in the hash table exceeds the product of the load factor and the
     * current capacity, the hash table is <i>rehashed</i> (that is, internal data
     * structures are rebuilt) so that the hash table has approximately twice the
     * number of buckets.
     *
     * <p>As a general rule, the default load factor (.75) offers a good
     * tradeoff between time and space costs.  Higher values decrease the
     * space overhead but increase the lookup cost (reflected in most of
     * the operations of the <tt>HashMap</tt> class, including
     * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
     * the map and its load factor should be taken into account when
     * setting its initial capacity, so as to minimize the number of
     * rehash operations.  If the initial capacity is greater than the
     * maximum number of entries divided by the load factor, no rehash
     * operations will ever occur.
     *
     * <p>If many mappings are to be stored in a <tt>HashMap</tt>
     * instance, creating it with a sufficiently large capacity will allow
     * the mappings to be stored more efficiently than letting it perform
     * automatic rehashing as needed to grow the table.  Note that using
     * many keys with the same {@code hashCode()} is a sure way to slow
     * down performance of any hash table. To ameliorate impact, when keys
     * are {@link Comparable}, this class may use comparison order among
     * keys to help break ties.
     *
     * <p><strong>Note that this implementation is not synchronized.</strong>
     * If multiple threads access a hash map concurrently, and at least one of
     * the threads modifies the map structurally, it <i>must</i> be
     * synchronized externally.  (A structural modification is any operation
     * that adds or deletes one or more mappings; merely changing the value
     * associated with a key that an instance already contains is not a
     * structural modification.)  This is typically accomplished by
     * synchronizing on some object that naturally encapsulates the map.
     * <p>
     * If no such object exists, the map should be "wrapped" using the
     * {@link Collections#synchronizedMap Collections.synchronizedMap}
     * method.  This is best done at creation time, to prevent accidental
     * unsynchronized access to the map:<pre>
     *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
     *
     * <p>The iterators returned by all of this class's "collection view methods"
     * are <i>fail-fast</i>: if the map is structurally modified at any time after
     * the iterator is created, in any way except through the iterator's own
     * <tt>remove</tt> method, the iterator will throw a
     * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
     * modification, the iterator fails quickly and cleanly, rather than risking
     * arbitrary, non-deterministic behavior at an undetermined time in the
     * future.
     *
     * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
     * as it is, generally speaking, impossible to make any hard guarantees in the
     * presence of unsynchronized concurrent modification.  Fail-fast iterators
     * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
     * Therefore, it would be wrong to write a program that depended on this
     * exception for its correctness: <i>the fail-fast behavior of iterators
     * should be used only to detect bugs.</i>
     *
     * <p>This class is a member of the
     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
     * Java Collections Framework</a>.
     *
     * @param <K> the type of keys maintained by this map
     * @param <V> the type of mapped values
     * @author Doug Lea
     * @author Josh Bloch
     * @author Arthur van Hoff
     * @author Neal Gafter
     * @see Object#hashCode()
     * @see Collection
     * @see Map
     * @see TreeMap
     * @see Hashtable
     * @since 1.2
     */
    public class HashMap<K, V> extends AbstractMap<K, V>
            implements Map<K, V>, Cloneable, Serializable {
    
        private static final long serialVersionUID = 362498820763181265L;
    
        /*
         * Implementation notes.
         *
         * This map usually acts as a binned (bucketed) hash table, but
         * when bins get too large, they are transformed into bins of
         * TreeNodes, each structured similarly to those in
         * java.util.TreeMap. Most methods try to use normal bins, but
         * relay to TreeNode methods when applicable (simply by checking
         * instanceof a node).  Bins of TreeNodes may be traversed and
         * used like any others, but additionally support faster lookup
         * when overpopulated. However, since the vast majority of bins in
         * normal use are not overpopulated, checking for existence of
         * tree bins may be delayed in the course of table methods.
         *
         * 实现说明
         * HashMap通常被看成是一个hash table容器,不过当这个容器变得很大时,就会转换成TreeNodes类型的容器,
         * 这种容器与TreeMap的结构很类似. HashMap中大多数都是使用的hash table容器,但是在适当的时候会转成TreeNode.
         * 红黑树(Bins of TreeNodes)可以像其容器一样进行遍历和使用,而且在数据量时,支持更快的查找.
         * 然而,大多数情况,hash table存储就可以了, 所以在检测是否存在tree bin结构时,可能造成延迟
         *
         *
         * Tree bins (i.e., bins whose elements are all TreeNodes) are
         * ordered primarily by hashCode, but in the case of ties, if two
         * elements are of the same "class C implements Comparable<C>",
         * type then their compareTo method is used for ordering. (We
         * conservatively check generic types via reflection to validate
         * this -- see method comparableClassFor).  The added complexity
         * of tree bins is worthwhile in providing worst-case O(log n)
         * operations when keys either have distinct hashes or are
         * orderable, Thus, performance degrades gracefully under
         * accidental or malicious usages in which hashCode() methods
         * return values that are poorly distributed, as well as those in
         * which many keys share a hashCode, so long as they are also
         * Comparable. (If neither of these apply, we may waste about a
         * factor of two in time and space compared to taking no
         * precautions. But the only known cases stem from poor user
         * programming practices that are already so slow that this makes
         * little difference.)
         *
         * 红黑树是首先使用hashCode进行排序. 其次是调用compareTo方法进行比较(通过反射去检测它的泛型,具体方法见comparableClassFor),
         * 当key拥有不同的hashCode或者是有序时,时间复杂度是O(log n), 所以说引入红黑树是值得的.
         *
         *
         * Because TreeNodes are about twice the size of regular nodes, we
         * use them only when bins contain enough nodes to warrant use
         * (see TREEIFY_THRESHOLD). And when they become too small (due to
         * removal or resizing) they are converted back to plain bins.  In
         * usages with well-distributed user hashCodes, tree bins are
         * rarely used.  Ideally, under random hashCodes, the frequency of
         * nodes in bins follows a Poisson distribution
         * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
         * parameter of about 0.5 on average for the default resizing
         * threshold of 0.75, although with a large variance because of
         * resizing granularity. Ignoring variance, the expected
         * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
         * factorial(k)). The first values are:
         *
         * 0:    0.60653066
         * 1:    0.30326533
         * 2:    0.07581633
         * 3:    0.01263606
         * 4:    0.00157952
         * 5:    0.00015795
         * 6:    0.00001316
         * 7:    0.00000094
         * 8:    0.00000006
         * more: less than 1 in ten million
         *
         * The root of a tree bin is normally its first node.  However,
         * sometimes (currently only upon Iterator.remove), the root might
         * be elsewhere, but can be recovered following parent links
         * (method TreeNode.root()).
         *
         * All applicable internal methods accept a hash code as an
         * argument (as normally supplied from a public method), allowing
         * them to call each other without recomputing user hashCodes.
         * Most internal methods also accept a "tab" argument, that is
         * normally the current table, but may be a new or old one when
         * resizing or converting.
         *
         * When bin lists are treeified, split, or untreeified, we keep
         * them in the same relative access/traversal order (i.e., field
         * Node.next) to better preserve locality, and to slightly
         * simplify handling of splits and traversals that invoke
         * iterator.remove. When using comparators on insertion, to keep a
         * total ordering (or as close as is required here) across
         * rebalancings, we compare classes and identityHashCodes as
         * tie-breakers.
         *
         * The use and transitions among plain vs tree modes is
         * complicated by the existence of subclass LinkedHashMap. See
         * below for hook methods defined to be invoked upon insertion,
         * removal and access that allow LinkedHashMap internals to
         * otherwise remain independent of these mechanics. (This also
         * requires that a map instance be passed to some utility methods
         * that may create new nodes.)
         *
         * The concurrent-programming-like SSA-based coding style helps
         * avoid aliasing errors amid all of the twisty pointer operations.
         */
    
        /**
         * The default initial capacity - MUST be a power of two.
         */
        static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    
        /**
         * The maximum capacity, used if a higher value is implicitly specified
         * by either of the constructors with arguments.
         * MUST be a power of two <= 1<<30.
         */
        static final int MAXIMUM_CAPACITY = 1 << 30;
    
        /**
         * The load factor used when none specified in constructor.
         */
        static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
        /**
         * The bin count threshold for using a tree rather than list for a
         * bin.  Bins are converted to trees when adding an element to a
         * bin with at least this many nodes. The value must be greater
         * than 2 and should be at least 8 to mesh with assumptions in
         * tree removal about conversion back to plain bins upon
         * shrinkage.
         */
        static final int TREEIFY_THRESHOLD = 8;
    
        /**
         * The bin count threshold for untreeifying a (split) bin during a
         * resize operation. Should be less than TREEIFY_THRESHOLD, and at
         * most 6 to mesh with shrinkage detection under removal.
         */
        static final int UNTREEIFY_THRESHOLD = 6;
    
        /**
         * The smallest table capacity for which bins may be treeified.
         * (Otherwise the table is resized if too many nodes in a bin.)
         * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
         * between resizing and treeification thresholds.
         */
        static final int MIN_TREEIFY_CAPACITY = 64;
    
        /**
         * Basic hash bin node, used for most entries.  (See below for
         * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
         */
        static class Node<K, V> implements Map.Entry<K, V> {
            final int hash;
            final K key;
            V value;
            Node<K, V> next;
    
            Node(int hash, K key, V value, Node<K, V> next) {
                this.hash = hash;
                this.key = key;
                this.value = value;
                this.next = next;
            }
    
            public final K getKey() {
                return key;
            }
    
            public final V getValue() {
                return value;
            }
    
            public final String toString() {
                return key + "=" + value;
            }
    
            public final int hashCode() {
                return Objects.hashCode(key) ^ Objects.hashCode(value);
            }
    
            public final V setValue(V newValue) {
                V oldValue = value;
                value = newValue;
                return oldValue;
            }
    
            public final boolean equals(Object o) {
                if (o == this)
                    return true;
                if (o instanceof Map.Entry) {
                    Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                    if (Objects.equals(key, e.getKey()) &&
                            Objects.equals(value, e.getValue()))
                        return true;
                }
                return false;
            }
        }
    
        /* ---------------- Static utilities -------------- */
    
        /**
         * Computes key.hashCode() and spreads (XORs) higher bits of hash
         * to lower.  Because the table uses power-of-two masking, sets of
         * hashes that vary only in bits above the current mask will
         * always collide. (Among known examples are sets of Float keys
         * holding consecutive whole numbers in small tables.)  So we
         * apply a transform that spreads the impact of higher bits
         * downward. There is a tradeoff between speed, utility, and
         * quality of bit-spreading. Because many common sets of hashes
         * are already reasonably distributed (so don't benefit from
         * spreading), and because we use trees to handle large sets of
         * collisions in bins, we just XOR some shifted bits in the
         * cheapest possible way to reduce systematic lossage, as well as
         * to incorporate impact of the highest bits that would otherwise
         * never be used in index calculations because of table bounds.
         */
        static final int hash(Object key) {
            int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
        }
    
        /**
         * Returns x's Class if it is of the form "class C implements
         * Comparable<C>", else null.
         */
        static Class<?> comparableClassFor(Object x) {
            if (x instanceof Comparable) {
                Class<?> c;
                Type[] ts, as;
                Type t;
                ParameterizedType p;
                if ((c = x.getClass()) == String.class) // bypass checks
                    return c;
                if ((ts = c.getGenericInterfaces()) != null) {
                    for (int i = 0; i < ts.length; ++i) {
                        if (((t = ts[i]) instanceof ParameterizedType) &&
                                ((p = (ParameterizedType) t).getRawType() ==
                                        Comparable.class) &&
                                (as = p.getActualTypeArguments()) != null &&
                                as.length == 1 && as[0] == c) // type arg is c
                            return c;
                    }
                }
            }
            return null;
        }
    
        /**
         * Returns k.compareTo(x) if x matches kc (k's screened comparable
         * class), else 0.
         */
        @SuppressWarnings({"rawtypes", "unchecked"}) // for cast to Comparable
        static int compareComparables(Class<?> kc, Object k, Object x) {
            return (x == null || x.getClass() != kc ? 0 :
                    ((Comparable) k).compareTo(x));
        }
    
        /**
         * Returns a power of two size for the given target capacity.
         */
        static final int tableSizeFor(int cap) {
            int n = cap - 1;
            n |= n >>> 1;
            n |= n >>> 2;
            n |= n >>> 4;
            n |= n >>> 8;
            n |= n >>> 16;
            return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
        }
    
        /* ---------------- Fields -------------- */
    
        /**
         * The table, initialized on first use, and resized as
         * necessary. When allocated, length is always a power of two.
         * (We also tolerate length zero in some operations to allow
         * bootstrapping mechanics that are currently not needed.)
         */
        transient Node<K, V>[] table;
    
        /**
         * Holds cached entrySet(). Note that AbstractMap fields are used
         * for keySet() and values().
         */
        transient Set<Map.Entry<K, V>> entrySet;
    
        /**
         * The number of key-value mappings contained in this map.
         */
        transient int size;
    
        /**
         * The number of times this HashMap has been structurally modified
         * Structural modifications are those that change the number of mappings in
         * the HashMap or otherwise modify its internal structure (e.g.,
         * rehash).  This field is used to make iterators on Collection-views of
         * the HashMap fail-fast.  (See ConcurrentModificationException).
         */
        transient int modCount;
    
        /**
         * The next size value at which to resize (capacity * load factor).
         *
         * @serial
         */
        // (The javadoc description is true upon serialization.
        // Additionally, if the table array has not been allocated, this
        // field holds the initial array capacity, or zero signifying
        // DEFAULT_INITIAL_CAPACITY.)
        int threshold;
    
        /**
         * The load factor for the hash table.
         *
         * @serial
         */
        final float loadFactor;
    
        /* ---------------- Public operations -------------- */
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and load factor.
         *
         * @param initialCapacity the initial capacity
         * @param loadFactor      the load factor
         * @throws IllegalArgumentException if the initial capacity is negative
         *                                  or the load factor is nonpositive
         */
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                        initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                        loadFactor);
            this.loadFactor = loadFactor;
            this.threshold = tableSizeFor(initialCapacity);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the specified initial
         * capacity and the default load factor (0.75).
         *
         * @param initialCapacity the initial capacity.
         * @throws IllegalArgumentException if the initial capacity is negative.
         */
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
    
        /**
         * Constructs an empty <tt>HashMap</tt> with the default initial capacity
         * (16) and the default load factor (0.75).
         */
        public HashMap() {
            this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
        }
    
        /**
         * Constructs a new <tt>HashMap</tt> with the same mappings as the
         * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
         * default load factor (0.75) and an initial capacity sufficient to
         * hold the mappings in the specified <tt>Map</tt>.
         *
         * @param m the map whose mappings are to be placed in this map
         * @throws NullPointerException if the specified map is null
         */
        public HashMap(Map<? extends K, ? extends V> m) {
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            putMapEntries(m, false);
        }
    
        /**
         * Implements Map.putAll and Map constructor
         *
         * @param m     the map
         * @param evict false when initially constructing this map, else
         *              true (relayed to method afterNodeInsertion).
         */
        final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
            int s = m.size();
            if (s > 0) {
                if (table == null) { // pre-size
                    float ft = ((float) s / loadFactor) + 1.0F;
                    int t = ((ft < (float) MAXIMUM_CAPACITY) ?
                            (int) ft : MAXIMUM_CAPACITY);
                    if (t > threshold)
                        threshold = tableSizeFor(t);
                } else if (s > threshold)
                    resize();
                for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                    K key = e.getKey();
                    V value = e.getValue();
                    putVal(hash(key), key, value, false, evict);
                }
            }
        }
    
        /**
         * Returns the number of key-value mappings in this map.
         *
         * @return the number of key-value mappings in this map
         */
        public int size() {
            return size;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains no key-value mappings.
         *
         * @return <tt>true</tt> if this map contains no key-value mappings
         */
        public boolean isEmpty() {
            return size == 0;
        }
    
        /**
         * Returns the value to which the specified key is mapped,
         * or {@code null} if this map contains no mapping for the key.
         *
         * <p>More formally, if this map contains a mapping from a key
         * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
         * key.equals(k))}, then this method returns {@code v}; otherwise
         * it returns {@code null}.  (There can be at most one such mapping.)
         *
         * <p>A return value of {@code null} does not <i>necessarily</i>
         * indicate that the map contains no mapping for the key; it's also
         * possible that the map explicitly maps the key to {@code null}.
         * The {@link #containsKey containsKey} operation may be used to
         * distinguish these two cases.
         *
         * @see #put(Object, Object)
         */
        public V get(Object key) {
            Node<K, V> e;
            return (e = getNode(hash(key), key)) == null ? null : e.value;
        }
    
        /**
         * Implements Map.get and related methods
         *
         * @param hash hash for key
         * @param key  the key
         * @return the node, or null if none
         */
        final Node<K, V> getNode(int hash, Object key) {
            Node<K, V>[] tab;
            Node<K, V> first, e;
            int n;
            K k;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                    (first = tab[(n - 1) & hash]) != null) {
                if (first.hash == hash && // always check first node
                        ((k = first.key) == key || (key != null && key.equals(k))))
                    return first;
                if ((e = first.next) != null) {
                    if (first instanceof TreeNode)
                        return ((TreeNode<K, V>) first).getTreeNode(hash, key);
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key || (key != null && key.equals(k))))
                            return e;
                    } while ((e = e.next) != null);
                }
            }
            return null;
        }
    
        /**
         * Returns <tt>true</tt> if this map contains a mapping for the
         * specified key.
         *
         * @param key The key whose presence in this map is to be tested
         * @return <tt>true</tt> if this map contains a mapping for the specified
         * key.
         */
        public boolean containsKey(Object key) {
            return getNode(hash(key), key) != null;
        }
    
        /**
         * Associates the specified value with the specified key in this map.
         * If the map previously contained a mapping for the key, the old
         * value is replaced.
         *
         * @param key   key with which the specified value is to be associated
         * @param value value to be associated with the specified key
         * @return the previous value associated with <tt>key</tt>, or
         * <tt>null</tt> if there was no mapping for <tt>key</tt>.
         * (A <tt>null</tt> return can also indicate that the map
         * previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V put(K key, V value) {
            return putVal(hash(key), key, value, false, true);
        }
    
        /**
         * Implements Map.put and related methods
         *
         * @param hash         hash for key
         * @param key          the key
         * @param value        the value to put
         * @param onlyIfAbsent if true, don't change existing value
         * @param evict        if false, the table is in creation mode.
         * @return previous value, or null if none
         */
        final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
            Node<K, V>[] tab;
            Node<K, V> p;
            int n, i;
            if ((tab = table) == null || (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((p = tab[i = (n - 1) & hash]) == null)
                tab[i] = newNode(hash, key, value, null);
            else {
                Node<K, V> e;
                K k;
                if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
                    e = p;
                else if (p instanceof TreeNode)
                    e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
                else {
                    // 循环遍历链表节点
                    for (int binCount = 0; ; ++binCount) {
                        if ((e = p.next) == null) {
                            //创建一个Node节点,然后通过尾插法添加到链表上
                            p.next = newNode(hash, key, value, null);
                            // 链表节点等于8时开始转红黑树
                            if (binCount >= TREEIFY_THRESHOLD - 1)
                                // 开始转树
                                treeifyBin(tab, hash);
                            break;
                        }
                        if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
                            break;
                        p = e;
                    }
                }
                if (e != null) { // existing mapping for key
                    V oldValue = e.value;
                    if (!onlyIfAbsent || oldValue == null)
                        e.value = value;
                    afterNodeAccess(e);
                    return oldValue;
                }
            }
            ++modCount;
            if (++size > threshold)
                resize();
            afterNodeInsertion(evict);
            return null;
        }
    
        /**
         * Initializes or doubles table size.  If null, allocates in
         * accord with initial capacity target held in field threshold.
         * Otherwise, because we are using power-of-two expansion, the
         * elements from each bin must either stay at same index, or move
         * with a power of two offset in the new table.
         *
         * @return the table
         */
        final Node<K, V>[] resize() {
            Node<K, V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;
            int oldThr = threshold;
            int newCap, newThr = 0;
            if (oldCap > 0) {
                if (oldCap >= MAXIMUM_CAPACITY) {
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                        oldCap >= DEFAULT_INITIAL_CAPACITY)
                    newThr = oldThr << 1; // double threshold
            } else if (oldThr > 0) // initial capacity was placed in threshold
                newCap = oldThr;
            else {               // zero initial threshold signifies using defaults
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int) (DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
            if (newThr == 0) {
                float ft = (float) newCap * loadFactor;
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float) MAXIMUM_CAPACITY ?
                        (int) ft : Integer.MAX_VALUE);
            }
            threshold = newThr;
            @SuppressWarnings({"rawtypes", "unchecked"})
            Node<K, V>[] newTab = (Node<K, V>[]) new Node[newCap];
            table = newTab;
            if (oldTab != null) {
                for (int j = 0; j < oldCap; ++j) {
                    Node<K, V> e;
                    // 遍历oldTab中的每个元素,然后将其移动到新的tab中去
                    if ((e = oldTab[j]) != null) {
                        oldTab[j] = null;
                        if (e.next == null) {  //key无hash冲突的情况
                            newTab[e.hash & (newCap - 1)] = e;
                        } else if (e instanceof TreeNode)
                            ((TreeNode<K, V>) e).split(this, newTab, j, oldCap);
    
                        else { // 链表Node的情况
                            Node<K, V> loHead = null, loTail = null;
                            Node<K, V> hiHead = null, hiTail = null;
                            Node<K, V> next;
                            do {
                                next = e.next;
                                if ((e.hash & oldCap) == 0) {
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                } else {
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            if (loTail != null) {
                                loTail.next = null;
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;
        }
    
        /**
         * Replaces all linked nodes in bin at index for given hash unless
         * table is too small, in which case resizes instead.
         */
        final void treeifyBin(Node<K, V>[] tab, int hash) {
            int n;  // table的长度
            int index;  // 当前添加的key在tab中的位置
            Node<K, V> e; // 当前添加的值的节点所在链表的头节点(第一次)
    
            // 为啥table的长度小于MIN_TREEIFY_CAPACITY 也要调用resize方法呢?
            if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
                resize();
    
            else if ((e = tab[index = (n - 1) & hash]) != null) {
                // hd : 头节点
                // tl : 尾节点
                TreeNode<K, V> hd = null, tl = null;
                do {
                    // 将普通Node节点转换成TreeNode节点,
                    TreeNode<K, V> p = replacementTreeNode(e, null);
                    if (tl == null)
                        hd = p; // 第一个肯定是链表的头节头,赋值给了hd
                    else {
                        // 将tl与p进行双向绑定
                        p.prev = tl;
                        tl.next = p;
                    }
                    tl = p; // 尾插法, 每次遍历转换成TreeNode节点都添加到上一个节点的尾部
                } while ((e = e.next) != null);
                // 将头节点放在tab表中的index位置
                if ((tab[index] = hd) != null)
                    // 下面才是真正的转树方法
                    hd.treeify(tab);
            }
        }
    
        /**
         * Copies all of the mappings from the specified map to this map.
         * These mappings will replace any mappings that this map had for
         * any of the keys currently in the specified map.
         *
         * @param m mappings to be stored in this map
         * @throws NullPointerException if the specified map is null
         */
        public void putAll(Map<? extends K, ? extends V> m) {
            putMapEntries(m, true);
        }
    
        /**
         * Removes the mapping for the specified key from this map if present.
         *
         * @param key key whose mapping is to be removed from the map
         * @return the previous value associated with <tt>key</tt>, or
         * <tt>null</tt> if there was no mapping for <tt>key</tt>.
         * (A <tt>null</tt> return can also indicate that the map
         * previously associated <tt>null</tt> with <tt>key</tt>.)
         */
        public V remove(Object key) {
            Node<K, V> e;
            return (e = removeNode(hash(key), key, null, false, true)) == null ?
                    null : e.value;
        }
    
        /**
         * Implements Map.remove and related methods
         *
         * @param hash       hash for key
         * @param key        the key
         * @param value      the value to match if matchValue, else ignored
         * @param matchValue if true only remove if value is equal
         * @param movable    if false do not move other nodes while removing
         * @return the node, or null if none
         */
        final Node<K, V> removeNode(int hash, Object key, Object value,
                                    boolean matchValue, boolean movable) {
            Node<K, V>[] tab;
            Node<K, V> p;
            int n, index;
            if ((tab = table) != null && (n = tab.length) > 0 &&
                    (p = tab[index = (n - 1) & hash]) != null) {
                Node<K, V> node = null, e;
                K k;
                V v;
                if (p.hash == hash &&
                        ((k = p.key) == key || (key != null && key.equals(k))))
                    node = p;
                else if ((e = p.next) != null) {
                    if (p instanceof TreeNode)
                        node = ((TreeNode<K, V>) p).getTreeNode(hash, key);
                    else {
                        do {
                            if (e.hash == hash &&
                                    ((k = e.key) == key ||
                                            (key != null && key.equals(k)))) {
                                node = e;
                                break;
                            }
                            p = e;
                        } while ((e = e.next) != null);
                    }
                }
                if (node != null && (!matchValue || (v = node.value) == value ||
                        (value != null && value.equals(v)))) {
                    if (node instanceof TreeNode)
                        ((TreeNode<K, V>) node).removeTreeNode(this, tab, movable);
                    else if (node == p)
                        tab[index] = node.next;
                    else
                        p.next = node.next;
                    ++modCount;
                    --size;
                    afterNodeRemoval(node);
                    return node;
                }
            }
            return null;
        }
    
        /**
         * Removes all of the mappings from this map.
         * The map will be empty after this call returns.
         */
        public void clear() {
            Node<K, V>[] tab;
            modCount++;
            if ((tab = table) != null && size > 0) {
                size = 0;
                for (int i = 0; i < tab.length; ++i)
                    tab[i] = null;
            }
        }
    
        /**
         * Returns <tt>true</tt> if this map maps one or more keys to the
         * specified value.
         *
         * @param value value whose presence in this map is to be tested
         * @return <tt>true</tt> if this map maps one or more keys to the
         * specified value
         */
        public boolean containsValue(Object value) {
            Node<K, V>[] tab;
            V v;
            if ((tab = table) != null && size > 0) {
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K, V> e = tab[i]; e != null; e = e.next) {
                        if ((v = e.value) == value ||
                                (value != null && value.equals(v)))
                            return true;
                    }
                }
            }
            return false;
        }
    
        /**
         * Returns a {@link Set} view of the keys contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa.  If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation), the results of
         * the iteration are undefined.  The set supports element removal,
         * which removes the corresponding mapping from the map, via the
         * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
         * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
         * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
         * operations.
         *
         * @return a set view of the keys contained in this map
         */
        public Set<K> keySet() {
            Set<K> ks = keySet;
            if (ks == null) {
                ks = new KeySet();
                keySet = ks;
            }
            return ks;
        }
    
        final class KeySet extends AbstractSet<K> {
            public final int size() {
                return size;
            }
    
            public final void clear() {
                HashMap.this.clear();
            }
    
            public final Iterator<K> iterator() {
                return new KeyIterator();
            }
    
            public final boolean contains(Object o) {
                return containsKey(o);
            }
    
            public final boolean remove(Object key) {
                return removeNode(hash(key), key, null, false, true) != null;
            }
    
            public final Spliterator<K> spliterator() {
                return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
    
            public final void forEach(Consumer<? super K> action) {
                Node<K, V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K, V> e = tab[i]; e != null; e = e.next)
                            action.accept(e.key);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
    
        /**
         * Returns a {@link Collection} view of the values contained in this map.
         * The collection is backed by the map, so changes to the map are
         * reflected in the collection, and vice-versa.  If the map is
         * modified while an iteration over the collection is in progress
         * (except through the iterator's own <tt>remove</tt> operation),
         * the results of the iteration are undefined.  The collection
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
         * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
         * support the <tt>add</tt> or <tt>addAll</tt> operations.
         *
         * @return a view of the values contained in this map
         */
        public Collection<V> values() {
            Collection<V> vs = values;
            if (vs == null) {
                vs = new Values();
                values = vs;
            }
            return vs;
        }
    
        final class Values extends AbstractCollection<V> {
            public final int size() {
                return size;
            }
    
            public final void clear() {
                HashMap.this.clear();
            }
    
            public final Iterator<V> iterator() {
                return new ValueIterator();
            }
    
            public final boolean contains(Object o) {
                return containsValue(o);
            }
    
            public final Spliterator<V> spliterator() {
                return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
    
            public final void forEach(Consumer<? super V> action) {
                Node<K, V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K, V> e = tab[i]; e != null; e = e.next)
                            action.accept(e.value);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
    
        /**
         * Returns a {@link Set} view of the mappings contained in this map.
         * The set is backed by the map, so changes to the map are
         * reflected in the set, and vice-versa.  If the map is modified
         * while an iteration over the set is in progress (except through
         * the iterator's own <tt>remove</tt> operation, or through the
         * <tt>setValue</tt> operation on a map entry returned by the
         * iterator) the results of the iteration are undefined.  The set
         * supports element removal, which removes the corresponding
         * mapping from the map, via the <tt>Iterator.remove</tt>,
         * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
         * <tt>clear</tt> operations.  It does not support the
         * <tt>add</tt> or <tt>addAll</tt> operations.
         *
         * @return a set view of the mappings contained in this map
         */
        public Set<Map.Entry<K, V>> entrySet() {
            Set<Map.Entry<K, V>> es;
            return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
        }
    
        final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
            public final int size() {
                return size;
            }
    
            public final void clear() {
                HashMap.this.clear();
            }
    
            public final Iterator<Map.Entry<K, V>> iterator() {
                return new EntryIterator();
            }
    
            public final boolean contains(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                Object key = e.getKey();
                Node<K, V> candidate = getNode(hash(key), key);
                return candidate != null && candidate.equals(e);
            }
    
            public final boolean remove(Object o) {
                if (o instanceof Map.Entry) {
                    Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
                    Object key = e.getKey();
                    Object value = e.getValue();
                    return removeNode(hash(key), key, value, true, true) != null;
                }
                return false;
            }
    
            public final Spliterator<Map.Entry<K, V>> spliterator() {
                return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
            }
    
            public final void forEach(Consumer<? super Map.Entry<K, V>> action) {
                Node<K, V>[] tab;
                if (action == null)
                    throw new NullPointerException();
                if (size > 0 && (tab = table) != null) {
                    int mc = modCount;
                    for (int i = 0; i < tab.length; ++i) {
                        for (Node<K, V> e = tab[i]; e != null; e = e.next)
                            action.accept(e);
                    }
                    if (modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
        }
    
        // Overrides of JDK8 Map extension methods
    
        @Override
        public V getOrDefault(Object key, V defaultValue) {
            Node<K, V> e;
            return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
        }
    
        @Override
        public V putIfAbsent(K key, V value) {
            return putVal(hash(key), key, value, true, true);
        }
    
        @Override
        public boolean remove(Object key, Object value) {
            return removeNode(hash(key), key, value, true, true) != null;
        }
    
        @Override
        public boolean replace(K key, V oldValue, V newValue) {
            Node<K, V> e;
            V v;
            if ((e = getNode(hash(key), key)) != null &&
                    ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
                e.value = newValue;
                afterNodeAccess(e);
                return true;
            }
            return false;
        }
    
        @Override
        public V replace(K key, V value) {
            Node<K, V> e;
            if ((e = getNode(hash(key), key)) != null) {
                V oldValue = e.value;
                e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
            return null;
        }
    
        @Override
        public V computeIfAbsent(K key,
                                 Function<? super K, ? extends V> mappingFunction) {
            if (mappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K, V>[] tab;
            Node<K, V> first;
            int n, i;
            int binCount = 0;
            TreeNode<K, V> t = null;
            Node<K, V> old = null;
            if (size > threshold || (tab = table) == null ||
                    (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
                else {
                    Node<K, V> e = first;
                    K k;
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
                V oldValue;
                if (old != null && (oldValue = old.value) != null) {
                    afterNodeAccess(old);
                    return oldValue;
                }
            }
            V v = mappingFunction.apply(key);
            if (v == null) {
                return null;
            } else if (old != null) {
                old.value = v;
                afterNodeAccess(old);
                return v;
            } else if (t != null)
                t.putTreeVal(this, tab, hash, key, v);
            else {
                tab[i] = newNode(hash, key, v, first);
                if (binCount >= TREEIFY_THRESHOLD - 1)
                    treeifyBin(tab, hash);
            }
            ++modCount;
            ++size;
            afterNodeInsertion(true);
            return v;
        }
    
        public V computeIfPresent(K key,
                                  BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            if (remappingFunction == null)
                throw new NullPointerException();
            Node<K, V> e;
            V oldValue;
            int hash = hash(key);
            if ((e = getNode(hash, key)) != null &&
                    (oldValue = e.value) != null) {
                V v = remappingFunction.apply(key, oldValue);
                if (v != null) {
                    e.value = v;
                    afterNodeAccess(e);
                    return v;
                } else
                    removeNode(hash, key, null, false, true);
            }
            return null;
        }
    
        @Override
        public V compute(K key,
                         BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
            if (remappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K, V>[] tab;
            Node<K, V> first;
            int n, i;
            int binCount = 0;
            TreeNode<K, V> t = null;
            Node<K, V> old = null;
            if (size > threshold || (tab = table) == null ||
                    (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
                else {
                    Node<K, V> e = first;
                    K k;
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
            }
            V oldValue = (old == null) ? null : old.value;
            V v = remappingFunction.apply(key, oldValue);
            if (old != null) {
                if (v != null) {
                    old.value = v;
                    afterNodeAccess(old);
                } else
                    removeNode(hash, key, null, false, true);
            } else if (v != null) {
                if (t != null)
                    t.putTreeVal(this, tab, hash, key, v);
                else {
                    tab[i] = newNode(hash, key, v, first);
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                }
                ++modCount;
                ++size;
                afterNodeInsertion(true);
            }
            return v;
        }
    
        @Override
        public V merge(K key, V value,
                       BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
            if (value == null)
                throw new NullPointerException();
            if (remappingFunction == null)
                throw new NullPointerException();
            int hash = hash(key);
            Node<K, V>[] tab;
            Node<K, V> first;
            int n, i;
            int binCount = 0;
            TreeNode<K, V> t = null;
            Node<K, V> old = null;
            if (size > threshold || (tab = table) == null ||
                    (n = tab.length) == 0)
                n = (tab = resize()).length;
            if ((first = tab[i = (n - 1) & hash]) != null) {
                if (first instanceof TreeNode)
                    old = (t = (TreeNode<K, V>) first).getTreeNode(hash, key);
                else {
                    Node<K, V> e = first;
                    K k;
                    do {
                        if (e.hash == hash &&
                                ((k = e.key) == key || (key != null && key.equals(k)))) {
                            old = e;
                            break;
                        }
                        ++binCount;
                    } while ((e = e.next) != null);
                }
            }
            if (old != null) {
                V v;
                if (old.value != null)
                    v = remappingFunction.apply(old.value, value);
                else
                    v = value;
                if (v != null) {
                    old.value = v;
                    afterNodeAccess(old);
                } else
                    removeNode(hash, key, null, false, true);
                return v;
            }
            if (value != null) {
                if (t != null)
                    t.putTreeVal(this, tab, hash, key, value);
                else {
                    tab[i] = newNode(hash, key, value, first);
                    if (binCount >= TREEIFY_THRESHOLD - 1)
                        treeifyBin(tab, hash);
                }
                ++modCount;
                ++size;
                afterNodeInsertion(true);
            }
            return value;
        }
    
        @Override
        public void forEach(BiConsumer<? super K, ? super V> action) {
            Node<K, V>[] tab;
            if (action == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K, V> e = tab[i]; e != null; e = e.next)
                        action.accept(e.key, e.value);
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    
        @Override
        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
            Node<K, V>[] tab;
            if (function == null)
                throw new NullPointerException();
            if (size > 0 && (tab = table) != null) {
                int mc = modCount;
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K, V> e = tab[i]; e != null; e = e.next) {
                        e.value = function.apply(e.key, e.value);
                    }
                }
                if (modCount != mc)
                    throw new ConcurrentModificationException();
            }
        }
    
        /* ------------------------------------------------------------ */
        // Cloning and serialization
    
        /**
         * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
         * values themselves are not cloned.
         *
         * @return a shallow copy of this map
         */
        @SuppressWarnings("unchecked")
        @Override
        public Object clone() {
            HashMap<K, V> result;
            try {
                result = (HashMap<K, V>) super.clone();
            } catch (CloneNotSupportedException e) {
                // this shouldn't happen, since we are Cloneable
                throw new InternalError(e);
            }
            result.reinitialize();
            result.putMapEntries(this, false);
            return result;
        }
    
        // These methods are also used when serializing HashSets
        final float loadFactor() {
            return loadFactor;
        }
    
        final int capacity() {
            return (table != null) ? table.length :
                    (threshold > 0) ? threshold :
                            DEFAULT_INITIAL_CAPACITY;
        }
    
        /**
         * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
         * serialize it).
         *
         * @serialData The <i>capacity</i> of the HashMap (the length of the
         * bucket array) is emitted (int), followed by the
         * <i>size</i> (an int, the number of key-value
         * mappings), followed by the key (Object) and value (Object)
         * for each key-value mapping.  The key-value mappings are
         * emitted in no particular order.
         */
        private void writeObject(java.io.ObjectOutputStream s)
                throws IOException {
            int buckets = capacity();
            // Write out the threshold, loadfactor, and any hidden stuff
            s.defaultWriteObject();
            s.writeInt(buckets);
            s.writeInt(size);
            internalWriteEntries(s);
        }
    
        /**
         * Reconstitute the {@code HashMap} instance from a stream (i.e.,
         * deserialize it).
         */
        private void readObject(java.io.ObjectInputStream s)
                throws IOException, ClassNotFoundException {
            // Read in the threshold (ignored), loadfactor, and any hidden stuff
            s.defaultReadObject();
            reinitialize();
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new InvalidObjectException("Illegal load factor: " +
                        loadFactor);
            s.readInt();                // Read and ignore number of buckets
            int mappings = s.readInt(); // Read number of mappings (size)
            if (mappings < 0)
                throw new InvalidObjectException("Illegal mappings count: " +
                        mappings);
            else if (mappings > 0) { // (if zero, use defaults)
                // Size the table using given load factor only if within
                // range of 0.25...4.0
                float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
                float fc = (float) mappings / lf + 1.0f;
                int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
                        DEFAULT_INITIAL_CAPACITY :
                        (fc >= MAXIMUM_CAPACITY) ?
                                MAXIMUM_CAPACITY :
                                tableSizeFor((int) fc));
                float ft = (float) cap * lf;
                threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
                        (int) ft : Integer.MAX_VALUE);
    
                // Check Map.Entry[].class since it's the nearest public type to
                // what we're actually creating.
                SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, cap);
                @SuppressWarnings({"rawtypes", "unchecked"})
                Node<K, V>[] tab = (Node<K, V>[]) new Node[cap];
                table = tab;
    
                // Read the keys and values, and put the mappings in the HashMap
                for (int i = 0; i < mappings; i++) {
                    @SuppressWarnings("unchecked")
                    K key = (K) s.readObject();
                    @SuppressWarnings("unchecked")
                    V value = (V) s.readObject();
                    putVal(hash(key), key, value, false, false);
                }
            }
        }
    
        /* ------------------------------------------------------------ */
        // iterators
    
        abstract class HashIterator {
            Node<K, V> next;        // next entry to return
            Node<K, V> current;     // current entry
            int expectedModCount;  // for fast-fail
            int index;             // current slot
    
            HashIterator() {
                expectedModCount = modCount;
                Node<K, V>[] t = table;
                current = next = null;
                index = 0;
                if (t != null && size > 0) { // advance to first entry
                    do {
                    } while (index < t.length && (next = t[index++]) == null);
                }
            }
    
            public final boolean hasNext() {
                return next != null;
            }
    
            final Node<K, V> nextNode() {
                Node<K, V>[] t;
                Node<K, V> e = next;
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                if (e == null)
                    throw new NoSuchElementException();
                if ((next = (current = e).next) == null && (t = table) != null) {
                    do {
                    } while (index < t.length && (next = t[index++]) == null);
                }
                return e;
            }
    
            public final void remove() {
                Node<K, V> p = current;
                if (p == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                current = null;
                K key = p.key;
                removeNode(hash(key), key, null, false, false);
                expectedModCount = modCount;
            }
        }
    
        final class KeyIterator extends HashIterator
                implements Iterator<K> {
            public final K next() {
                return nextNode().key;
            }
        }
    
        final class ValueIterator extends HashIterator
                implements Iterator<V> {
            public final V next() {
                return nextNode().value;
            }
        }
    
        final class EntryIterator extends HashIterator
                implements Iterator<Map.Entry<K, V>> {
            public final Map.Entry<K, V> next() {
                return nextNode();
            }
        }
    
        /* ------------------------------------------------------------ */
        // spliterators
    
        static class HashMapSpliterator<K, V> {
            final HashMap<K, V> map;
            Node<K, V> current;          // current node
            int index;                  // current index, modified on advance/split
            int fence;                  // one past last index
            int est;                    // size estimate
            int expectedModCount;       // for comodification checks
    
            HashMapSpliterator(HashMap<K, V> m, int origin,
                               int fence, int est,
                               int expectedModCount) {
                this.map = m;
                this.index = origin;
                this.fence = fence;
                this.est = est;
                this.expectedModCount = expectedModCount;
            }
    
            final int getFence() { // initialize fence and size on first use
                int hi;
                if ((hi = fence) < 0) {
                    HashMap<K, V> m = map;
                    est = m.size;
                    expectedModCount = m.modCount;
                    Node<K, V>[] tab = m.table;
                    hi = fence = (tab == null) ? 0 : tab.length;
                }
                return hi;
            }
    
            public final long estimateSize() {
                getFence(); // force init
                return (long) est;
            }
        }
    
        static final class KeySpliterator<K, V>
                extends HashMapSpliterator<K, V>
                implements Spliterator<K> {
            KeySpliterator(HashMap<K, V> m, int origin, int fence, int est,
                           int expectedModCount) {
                super(m, origin, fence, est, expectedModCount);
            }
    
            public KeySpliterator<K, V> trySplit() {
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null :
                        new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
                                expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super K> action) {
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K, V> m = map;
                Node<K, V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                } else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                        (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K, V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p.key);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super K> action) {
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K, V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            K k = current.key;
                            current = current.next;
                            action.accept(k);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                        Spliterator.DISTINCT;
            }
        }
    
        static final class ValueSpliterator<K, V>
                extends HashMapSpliterator<K, V>
                implements Spliterator<V> {
            ValueSpliterator(HashMap<K, V> m, int origin, int fence, int est,
                             int expectedModCount) {
                super(m, origin, fence, est, expectedModCount);
            }
    
            public ValueSpliterator<K, V> trySplit() {
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null :
                        new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
                                expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super V> action) {
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K, V> m = map;
                Node<K, V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                } else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                        (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K, V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p.value);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super V> action) {
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K, V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            V v = current.value;
                            current = current.next;
                            action.accept(v);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
            }
        }
    
        static final class EntrySpliterator<K, V>
                extends HashMapSpliterator<K, V>
                implements Spliterator<Map.Entry<K, V>> {
            EntrySpliterator(HashMap<K, V> m, int origin, int fence, int est,
                             int expectedModCount) {
                super(m, origin, fence, est, expectedModCount);
            }
    
            public EntrySpliterator<K, V> trySplit() {
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid || current != null) ? null :
                        new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
                                expectedModCount);
            }
    
            public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
                int i, hi, mc;
                if (action == null)
                    throw new NullPointerException();
                HashMap<K, V> m = map;
                Node<K, V>[] tab = m.table;
                if ((hi = fence) < 0) {
                    mc = expectedModCount = m.modCount;
                    hi = fence = (tab == null) ? 0 : tab.length;
                } else
                    mc = expectedModCount;
                if (tab != null && tab.length >= hi &&
                        (i = index) >= 0 && (i < (index = hi) || current != null)) {
                    Node<K, V> p = current;
                    current = null;
                    do {
                        if (p == null)
                            p = tab[i++];
                        else {
                            action.accept(p);
                            p = p.next;
                        }
                    } while (p != null || i < hi);
                    if (m.modCount != mc)
                        throw new ConcurrentModificationException();
                }
            }
    
            public boolean tryAdvance(Consumer<? super Map.Entry<K, V>> action) {
                int hi;
                if (action == null)
                    throw new NullPointerException();
                Node<K, V>[] tab = map.table;
                if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
                    while (current != null || index < hi) {
                        if (current == null)
                            current = tab[index++];
                        else {
                            Node<K, V> e = current;
                            current = current.next;
                            action.accept(e);
                            if (map.modCount != expectedModCount)
                                throw new ConcurrentModificationException();
                            return true;
                        }
                    }
                }
                return false;
            }
    
            public int characteristics() {
                return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
                        Spliterator.DISTINCT;
            }
        }
    
        /* ------------------------------------------------------------ */
        // LinkedHashMap support
    
    
        /*
         * The following package-protected methods are designed to be
         * overridden by LinkedHashMap, but not by any other subclass.
         * Nearly all other internal methods are also package-protected
         * but are declared final, so can be used by LinkedHashMap, view
         * classes, and HashSet.
         */
    
        // Create a regular (non-tree) node
        Node<K, V> newNode(int hash, K key, V value, Node<K, V> next) {
            return new Node<>(hash, key, value, next);
        }
    
        // For conversion from TreeNodes to plain nodes
        Node<K, V> replacementNode(Node<K, V> p, Node<K, V> next) {
            return new Node<>(p.hash, p.key, p.value, next);
        }
    
        // Create a tree bin node
        TreeNode<K, V> newTreeNode(int hash, K key, V value, Node<K, V> next) {
            return new TreeNode<>(hash, key, value, next);
        }
    
        // For treeifyBin
        TreeNode<K, V> replacementTreeNode(Node<K, V> p, Node<K, V> next) {
            return new TreeNode<>(p.hash, p.key, p.value, next);
        }
    
        /**
         * Reset to initial default state.  Called by clone and readObject.
         */
        void reinitialize() {
            table = null;
            entrySet = null;
            keySet = null;
            values = null;
            modCount = 0;
            threshold = 0;
            size = 0;
        }
    
        // Callbacks to allow LinkedHashMap post-actions
        void afterNodeAccess(Node<K, V> p) {
        }
    
        void afterNodeInsertion(boolean evict) {
        }
    
        void afterNodeRemoval(Node<K, V> p) {
        }
    
        // Called only from writeObject, to ensure compatible ordering.
        void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
            Node<K, V>[] tab;
            if (size > 0 && (tab = table) != null) {
                for (int i = 0; i < tab.length; ++i) {
                    for (Node<K, V> e = tab[i]; e != null; e = e.next) {
                        s.writeObject(e.key);
                        s.writeObject(e.value);
                    }
                }
            }
        }
    
        /* ------------------------------------------------------------ */
        // Tree bins
    
        /**
         * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
         * extends Node) so can be used as extension of either regular or
         * linked node.
         */
        static final class TreeNode<K, V> extends LinkedHashMap.Entry<K, V> {
            TreeNode<K, V> parent;  // red-black tree links
            TreeNode<K, V> left;
            TreeNode<K, V> right;
            TreeNode<K, V> prev;    // needed to unlink next upon deletion
            boolean red;
    
            TreeNode(int hash, K key, V val, Node<K, V> next) {
                super(hash, key, val, next);
            }
    
            /**
             * 返回该节点的根节点
             */
            final TreeNode<K, V> root() {
                for (TreeNode<K, V> r = this, p; ; ) {
                    if ((p = r.parent) == null)
                        return r;
                    r = p;
                }
            }
    
            /**
             * Ensures that the given root is the first node of its bin.
             */
            static <K, V> void moveRootToFront(Node<K, V>[] tab, TreeNode<K, V> root) {
                int n;  //tab 的length
                if (root != null && tab != null && (n = tab.length) > 0) {
                    // tab的index一直都是用这个小算法去计算的, 大佬你为什么封装成一个方法呢???????????
                    int index = (n - 1) & root.hash;
                    TreeNode<K, V> first = (TreeNode<K, V>) tab[index]; //拿到tab中的元素
                    if (root != first) {  // 如果这个root已经不是tab数组中的元素,说明tree旋转了, 根节点发生了变化
                        Node<K, V> rn;
                        tab[index] = root;  // 将root放进入,覆盖了tab数组中原来index位置的数据
                        TreeNode<K, V> rp = root.prev; // 你妹的,prev你又出现了?????
    
                        /**
                         * 老子服了,,.,,,,,,
                         * 你把root节点从这个链上摘出来, 放到原先链的前面, 我忍了,,,
                         * 但是你把rp和rn拿出来互相引用, 后面又没地方去使用,,你想干咩也???
                         */
    
                        if ((rn = root.next) != null)
                            ((TreeNode<K, V>) rn).prev = rp;
                        if (rp != null)
                            rp.next = rn;
    
    
                        // 把root放在原先链的前面, 这又不是前插法了.....................
                        if (first != null)
                            first.prev = root;
                        root.next = first;
                        root.prev = null;
                    }
                    assert checkInvariants(root);
                }
            }
    
            /**
             * Finds the node starting at root p with the given hash and key.
             * The kc argument caches comparableClassFor(key) upon first use
             * comparing keys.
             */
            final TreeNode<K, V> find(int h, Object k, Class<?> kc) {
                TreeNode<K, V> p = this;
                do {
                    int ph, dir;
                    K pk;
                    TreeNode<K, V> pl = p.left, pr = p.right, q;
                    if ((ph = p.hash) > h)
                        p = pl;
                    else if (ph < h)
                        p = pr;
                    else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                        return p;
                    else if (pl == null)
                        p = pr;
                    else if (pr == null)
                        p = pl;
                    else if ((kc != null ||
                            (kc = comparableClassFor(k)) != null) &&
                            (dir = compareComparables(kc, k, pk)) != 0)
                        p = (dir < 0) ? pl : pr;
                    else if ((q = pr.find(h, k, kc)) != null)
                        return q;
                    else
                        p = pl;
                } while (p != null);
                return null;
            }
    
            /**
             * Calls find for root node.
             */
            final TreeNode<K, V> getTreeNode(int h, Object k) {
                return ((parent != null) ? root() : this).find(h, k, null);
            }
    
            /**
             * Tie-breaking utility for ordering insertions when equal
             * hashCodes and non-comparable. We don't require a total
             * order, just a consistent insertion rule to maintain
             * equivalence across rebalancings. Tie-breaking further than
             * necessary simplifies testing a bit.
             */
            static int tieBreakOrder(Object a, Object b) {
                int d;
                if (a == null || b == null ||
                        (d = a.getClass().getName().
                                compareTo(b.getClass().getName())) == 0)
                    d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
                            -1 : 1);
                return d;
            }
    
            /**
             * Forms tree of the nodes linked from this node.
             * 通过两层for循环完成TreeNode链表到红黑树的转换
             * 外层遍历链表中的节点, 内层循环确定该节点应该添加到树的那个位置上
             *
             * @return root of tree
             */
            final void treeify(Node<K, V>[] tab) {
                TreeNode<K, V> root = null;
                // this就是hd,头节点
                for (TreeNode<K, V> x = this, next; x != null; x = next) {
                    // 第一次循环时,x肯定是头节点hd
                    next = (TreeNode<K, V>) x.next;
                    // 声明了左右节点都是null
                    x.left = x.right = null;
                    if (root == null) {  // 第一次循环,root肯定是空,所以进入if代码块.
                        x.parent = null;  // 头节点的父节点肯定是null
                        x.red = false;   // 根据红黑树的性,根节点肯定是黑色
                        root = x;   // 将链表的头节点弄成树的root(根)节点
                    } else {  // 非首次for循环进入else代码块,x节点是即将要添加到树上的TreeNode节点.
                        K k = x.key;
                        int h = x.hash;
                        Class<?> kc = null;
    
                        // 这个for循环有点意思 , 什么条件让它一直执行下去的呢?
                        for (TreeNode<K, V> p = root; ; ) {
                            int dir;  // 两临两个TreeNode节点hashCode值的比较结果,用于确定节点在树中的位置
                            int ph;  // 已经是树上的节点的hash值
                            K pk = p.key;
                            if ((ph = p.hash) > h)  // 树上结点的hash大于待加入树上的节点的hash值, dir = -1, 左插
                                dir = -1;
                            else if (ph < h)   // 树上结点的hash小于待加入树上的节点的hash值, dir =1 , 右插
                                dir = 1;
                            else if ((kc == null &&
                                    (kc = comparableClassFor(k)) == null) ||
                                    (dir = compareComparables(kc, k, pk)) == 0)
                                //调用了compareTo方法比较,结果返回1 或者 -1 . 没有0的情况
                                dir = tieBreakOrder(k, pk);
                            // 整个了临时变量 , p肯定会成为待添加节点x的父节点
                            TreeNode<K, V> xp = p;
                            // dir = -1 , 左插.  dir = 1 ,右插
                            // 这行代码很有意思呀,它是内层for循环能执行下去的关键
                            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                                x.parent = xp;  // xp成了x的父节点
                                if (dir <= 0)
                                    xp.left = x;  // 左子树上
                                else
                                    xp.right = x;  // 右子树上
                                // 红黑树添加了元素,平衡有可能被破坏,这儿需要进行旋转或者变色
                                root = balanceInsertion(root, x);
                                break;
                            }
                        }
                    }
                }
                moveRootToFront(tab, root);
            }
    
            /**
             * Returns a list of non-TreeNodes replacing those linked from
             * this node.
             * 由TreeNode类型转成Node类型节点,也是从头节点开始依次往下进行的
             */
            final Node<K, V> untreeify(HashMap<K, V> map) {
                Node<K, V> hd = null, tl = null;
                // this为啥是Node类型? 因为TreeNode是Node的子类.
                for (Node<K, V> q = this; q != null; q = q.next) {
                    Node<K, V> p = map.replacementNode(q, null);
                    if (tl == null)
                        hd = p;  // TreeNode链的头转成了Node链的头
                    else
                        tl.next = p;
                    tl = p;
                }
                return hd;
            }
    
            /**
             * Tree version of putVal.
             * 树结构的putVal方法 , 该方法只负责找到合适的位置插入元素, 平衡啥的都交给balanceInsertion方法去完成
             *
             * @param h   : k的hash值,
             * @param k   : put方法的key
             * @param v   : put方法的value
             * @param map : 这儿传入map变量的目的,竟然为了调用了它的newTreeNode方法创建一个TreeNode对象.....好点奇怪....
             */
            final TreeNode<K, V> putTreeVal(HashMap<K, V> map, Node<K, V>[] tab, int h, K k, V v) {
                Class<?> kc = null;
                boolean searched = false;
                // 找到当前节点this所在树的根节点
                TreeNode<K, V> root = (parent != null) ? root() : this;
                // 从根节点开始遍历这颗树
                for (TreeNode<K, V> p = root; ; ) {
                    int dir; // hash值比较的结果,这个值的大小决定了当前插入的节点是插左还是插右
                    int ph; // 父节点的hash
                    K pk;  // 父节点的key
                    if ((ph = p.hash) > h) {  //父节的hash与当前put key的hash进行比较
                        dir = -1;
                    } else if (ph < h) {
                        dir = 1;
                    } else if ((pk = p.key) == k || (k != null && k.equals(pk))) {
                        return p;  // key已经存在了
                    } else if (  // 这儿是使用compareTo方法去比较, 反正就是要比较出大小来
                            (kc == null &&
                                    (kc = comparableClassFor(k)) == null) ||
                                    (dir = compareComparables(kc, k, pk)) == 0) {
                        if (!searched) {
                            TreeNode<K, V> q, ch;
                            searched = true;
                            if (((ch = p.left) != null &&
                                    (q = ch.find(h, k, kc)) != null) ||
                                    ((ch = p.right) != null &&
                                            (q = ch.find(h, k, kc)) != null))
                                return q;
                        }
                        dir = tieBreakOrder(k, pk);
                    }
                    // 把p弄个临时变量存起来, 因为p马上就要变了,
                    TreeNode<K, V> xp = p;
                    // 根据dir的大小来决定是往左遍历,还是往右遍历...
                    // 注意呀, 下面这个if代码也是很有意思的, 如果p(此p以非前p了)不为空,就会循环执行前面的逻辑呀
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {  // 进入if, 说明找到了可插入的点了,
                        // 这儿为啥用到了Node类的属性呢????
                        // 为啥要获取它的next节点信息
                        Node<K, V> xpn = xp.next;
                        // 为啥创建TreeNode对象时要去关联next节点???????????????
                        // 难道是为了tree退化成链表时使用????
                        TreeNode<K, V> x = map.newTreeNode(h, k, v, xpn);
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        xp.next = x;
                        x.parent = x.prev = xp; // 这是干吗? 有啥用?????????????????????????
                        if (xpn != null) {
                            ((TreeNode<K, V>) xpn).prev = x;// 你妹的, 不是已经是有关系了吗, 你还来搞另一条关系干啥, 你到底想哪样???
                        }
                        // 因为添加了一个节点,树会自平衡, 原root节点可能会发生改变,所以moveRootToFront会将新的root节点,移到头部去
                        moveRootToFront(tab, balanceInsertion(root, x));
                        return null;
                    }
                }
            }
    
            /**
             * Removes the given node, that must be present before this call.
             * This is messier than typical red-black deletion code because we
             * cannot swap the contents of an interior node with a leaf
             * successor that is pinned by "next" pointers that are accessible
             * independently during traversal. So instead we swap the tree
             * linkages. If the current tree appears to have too few nodes,
             * the bin is converted back to a plain bin. (The test triggers
             * somewhere between 2 and 6 nodes, depending on tree structure).
             */
            final void removeTreeNode(HashMap<K, V> map, Node<K, V>[] tab, boolean movable) {
                int n;
                if (tab == null || (n = tab.length) == 0)
                    return;
                int index = (n - 1) & hash;
                TreeNode<K, V> first = (TreeNode<K, V>) tab[index], root = first, rl;
                TreeNode<K, V> succ = (TreeNode<K, V>) next, pred = prev;
                if (pred == null)
                    tab[index] = first = succ;
                else
                    pred.next = succ;
                if (succ != null)
                    succ.prev = pred;
                if (first == null)
                    return;
                if (root.parent != null)
                    root = root.root();
                if (root == null || root.right == null ||
                        (rl = root.left) == null || rl.left == null) {
                    tab[index] = first.untreeify(map);  // too small
                    return;
                }
                TreeNode<K, V> p = this, pl = left, pr = right, replacement;
                if (pl != null && pr != null) {
                    TreeNode<K, V> s = pr, sl;
                    while ((sl = s.left) != null) // find successor
                        s = sl;
                    boolean c = s.red;
                    s.red = p.red;
                    p.red = c; // swap colors
                    TreeNode<K, V> sr = s.right;
                    TreeNode<K, V> pp = p.parent;
                    if (s == pr) { // p was s's direct parent
                        p.parent = s;
                        s.right = p;
                    } else {
                        TreeNode<K, V> sp = s.parent;
                        if ((p.parent = sp) != null) {
                            if (s == sp.left)
                                sp.left = p;
                            else
                                sp.right = p;
                        }
                        if ((s.right = pr) != null)
                            pr.parent = s;
                    }
                    p.left = null;
                    if ((p.right = sr) != null)
                        sr.parent = p;
                    if ((s.left = pl) != null)
                        pl.parent = s;
                    if ((s.parent = pp) == null)
                        root = s;
                    else if (p == pp.left)
                        pp.left = s;
                    else
                        pp.right = s;
                    if (sr != null)
                        replacement = sr;
                    else
                        replacement = p;
                } else if (pl != null)
                    replacement = pl;
                else if (pr != null)
                    replacement = pr;
                else
                    replacement = p;
                if (replacement != p) {
                    TreeNode<K, V> pp = replacement.parent = p.parent;
                    if (pp == null)
                        root = replacement;
                    else if (p == pp.left)
                        pp.left = replacement;
                    else
                        pp.right = replacement;
                    p.left = p.right = p.parent = null;
                }
    
                TreeNode<K, V> r = p.red ? root : balanceDeletion(root, replacement);
    
                if (replacement == p) {  // detach
                    TreeNode<K, V> pp = p.parent;
                    p.parent = null;
                    if (pp != null) {
                        if (p == pp.left)
                            pp.left = null;
                        else if (p == pp.right)
                            pp.right = null;
                    }
                }
                if (movable)
                    moveRootToFront(tab, r);
            }
    
            /**
             * Splits nodes in a tree bin into lower and upper tree bins,
             * or untreeifies if now too small. Called only from resize;
             * see above discussion about split bits and indices.
             *
             * @param map   the map
             * @param tab   the table for recording bin heads
             * @param index the index of the table being split
             *              当前节点在oldTab中的index值
             * @param bit   the bit of hash to split on
             *              oldTab的length
             */
            final void split(HashMap<K, V> map, Node<K, V>[] tab, int index, int bit) {
                TreeNode<K, V> b = this;
                // Relink into lo and hi lists, preserving order
                TreeNode<K, V> loHead = null, loTail = null;
                TreeNode<K, V> hiHead = null, hiTail = null;
                int lc = 0, hc = 0;
                // 这里同样使用了尾插法,将链表拆分成了两个新的链表
                for (TreeNode<K, V> e = b, next; e != null; e = next) {
                    next = (TreeNode<K, V>) e.next;
                    e.next = null;
                    if ((e.hash & bit) == 0) {
                        if ((e.prev = loTail) == null)
                            loHead = e;
                        else
                            loTail.next = e;
                        loTail = e;
                        ++lc; // 累加计数
                    } else {
                        if ((e.prev = hiTail) == null)
                            hiHead = e;
                        else
                            hiTail.next = e;
                        hiTail = e;
                        ++hc;
                    }
                }
    
                if (loHead != null) {
                    // 如果拆分之后低位链表节点个数小于6, 要退化成普通节点
                    if (lc <= UNTREEIFY_THRESHOLD)
                        tab[index] = loHead.untreeify(map);
                    else {
                        tab[index] = loHead;
                        if (hiHead != null) // (else is already treeified)// 已经由Node类型转成了TreeNode类型
                            // 转树
                            loHead.treeify(tab);
                    }
                }
                if (hiHead != null) {
                    if (hc <= UNTREEIFY_THRESHOLD)
                        tab[index + bit] = hiHead.untreeify(map);
                    else {
                        tab[index + bit] = hiHead;
                        if (loHead != null)
                            hiHead.treeify(tab);
                    }
                }
            }
    
            /* ------------------------------------------------------------ */
            // Red-black tree methods, all adapted from CLR
            // 左旋
            static <K, V> TreeNode<K, V> rotateLeft(TreeNode<K, V> root, TreeNode<K, V> p) {
                // 忧伤, 读代码 r 节点是左旋的支撑点,
                TreeNode<K, V> r, pp, rl;
                if (p != null && (r = p.right) != null) {// 这一步,p的右节点是r, 这个r不就是前面的x吗
    
    
                    // 支撑节点的左子变成原父节点的右子树.
                    // 因为下面两行的功能对于下面的if...else if...else都适用,所以提到前面来了
                    if ((rl = p.right = r.left) != null)  // 如果等于,就说明当前添加节点无左子树
                        rl.parent = p;
    
    
                    // 下面三个条件一起看
                    if ((pp = r.parent = p.parent) == null) { // if情况,p是根节点(这种情况最简单)
                        (root = r).red = false;  // r成了根节点  ------------第一种情况
                    } else if (pp.left == p) {
                        pp.left = r;   // ------------第二种情况
                    } else {  // 这种情况应该是: p是pp的右子树
                        pp.right = r;  // ------------第三种情况
                    }
    
                    // 下面两句代码的意思就是: p成了r左子树
                    r.left = p;
                    p.parent = r;
                }
                return root;
            }
    
            /**
             * 右旋 ,其实跟左旋是一样一样的道理,只是旋转的中心节点不同而已
             *
             * @param root 根节点
             * @param p    其[实是当前节点的爷节点
             * @param <K>
             * @param <V>
             * @return
             */
            static <K, V> TreeNode<K, V> rotateRight(TreeNode<K, V> root, TreeNode<K, V> p) {
                TreeNode<K, V> l, pp, lr;
                if (p != null && (l = p.left) != null) {
                    // 将l的右子树移动到p的左子树位置 (右旋就是干这事嘛,)
                    if ((lr = p.left = l.right) != null)
                        lr.parent = p;
    
    
                    if ((pp = l.parent = p.parent) == null)  // p就是根节点
                        (root = l).red = false;
                    else if (pp.right == p)
                        pp.right = l;
                    else
                        pp.left = l;
                    l.right = p;
                    p.parent = l;
                }
                return root;
            }
    
            /**
             * 这个方法主要是在干变色的事, 并判断何时该旋转,
             * 而具体的旋转逻辑由 rotateLeft 和 rotateRight 两个方法完成
             *
             * @param root
             * @param x    刚添加到树上的节点
             * @param <K>
             * @param <V>
             * @return
             */
            static <K, V> TreeNode<K, V> balanceInsertion(TreeNode<K, V> root, TreeNode<K, V> x) {
                // 根据红黑树的性质,新添加的元素节点一定是红色
                x.red = true;
                /**
                 * xp : x节点的父节点
                 * xpp : x节点的父父节点,爷节点
                 * xppl : x爷节点左子节点
                 * xppr : x爷节点的右子节点
                 */
                // 又是一个无限循环
                for (TreeNode<K, V> xp, xpp, xppl, xppr; ; ) {
                    // 如果x节点的父节点是null,
                    if ((xp = x.parent) == null) {
                        // 那么x节点就会成为root节点,变黑色
                        x.red = false;
                        return x;
                    } else if (!xp.red || (xpp = xp.parent) == null)  // 如果x的父节点是黑色或者 x的爷爷节点是null
                        /*
                           如何理解?
                           !xp.red代码分析: x是新增量节点,肯定是红色,xp父节点不是红色, 所以肯定不需要变色,也不需要旋转, 红黑树是平衡的,直接返回root节点即可
                           (xpp = xp.parent) == null 分析: 爷节点是空,说明红黑树的深度为2. 所以无论x是添加到left ,还是right, 都是平衡的,直接返回root节点即可
    
                         */
                        return root;
    
                    /*
                     *如果代码执行到这儿,那么x一定有父节点和爷节点,且爷节点是黑,那么父节点就是红;
                     */
                    if (xp == (xppl = xpp.left)) { // xp在爷节点的左子树上
                        /*
                         *if的变色逻辑就是:
                         *  叔,父都是红色(由它可以推出爷是黑), 这时需要变色
                         *  叔,父由红变黑,爷由黑变红
                         *  只需变色即可重新自平衡
                         */
                        if ((xppr = xpp.right) != null && xppr.red) { // x的右叔是红
                            xppr.red = false;  //右叔变黑
                            xp.red = false; // 父变黑
                            xpp.red = true; // 爷由黑变红
                            x = xpp;  // 当前节点就变成爷节点了.
                        } else {
                            /**
                             * 进入这个else的条件有:
                             * 1. 右叔为空,无节点(这种情况如果存在,是单左旋)
                             * 2. 右叔存在,但是为黑色
                             */
                            if (x == xp.right) {// x在xp的右子树上
                                // 左旋(以父节点作为支点左旋,所以将xp赋值给x)
                                // 即然这儿发生左旋, 那么xp一定是红,右叔一定是黑...
                                root = rotateLeft(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;  // 这句代码的作用呢????????????
                            }
    
                            if (xp != null) {
                                // 这个判断是什么意思 ??????????
                                // 为什么再一次判断xp不为空???????
                                // 经历过rotateLeft之后的xp与未rotateLeft之前xp是同一个节点吗?????  答案肯定是!
                                xp.red = false;// 父黑
                                if (xpp != null) {
                                    xpp.red = true;  // 爷红
                                    root = rotateRight(root, xpp);
                                }
                            }
                        }
                    } else {
                        if (xppl != null && xppl.red) {
                            xppl.red = false;
                            xp.red = false;
                            xpp.red = true;
                            x = xpp;
                        } else {
                            if (x == xp.left) {
                                root = rotateRight(root, x = xp);
                                xpp = (xp = x.parent) == null ? null : xp.parent;
                            }
                            if (xp != null) {
                                xp.red = false;
                                if (xpp != null) {
                                    xpp.red = true;
                                    root = rotateLeft(root, xpp);
                                }
                            }
                        }
                    }
                }
            }
    
            static <K, V> TreeNode<K, V> balanceDeletion(TreeNode<K, V> root,
                                                         TreeNode<K, V> x) {
                for (TreeNode<K, V> xp, xpl, xpr; ; ) {
                    if (x == null || x == root)
                        return root;
                    else if ((xp = x.parent) == null) {
                        x.red = false;
                        return x;
                    } else if (x.red) {
                        x.red = false;
                        return root;
                    } else if ((xpl = xp.left) == x) {
                        if ((xpr = xp.right) != null && xpr.red) {
                            xpr.red = false;
                            xp.red = true;
                            root = rotateLeft(root, xp);
                            xpr = (xp = x.parent) == null ? null : xp.right;
                        }
                        if (xpr == null)
                            x = xp;
                        else {
                            TreeNode<K, V> sl = xpr.left, sr = xpr.right;
                            if ((sr == null || !sr.red) &&
                                    (sl == null || !sl.red)) {
                                xpr.red = true;
                                x = xp;
                            } else {
                                if (sr == null || !sr.red) {
                                    if (sl != null)
                                        sl.red = false;
                                    xpr.red = true;
                                    root = rotateRight(root, xpr);
                                    xpr = (xp = x.parent) == null ?
                                            null : xp.right;
                                }
                                if (xpr != null) {
                                    xpr.red = (xp == null) ? false : xp.red;
                                    if ((sr = xpr.right) != null)
                                        sr.red = false;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    root = rotateLeft(root, xp);
                                }
                                x = root;
                            }
                        }
                    } else { // symmetric
                        if (xpl != null && xpl.red) {
                            xpl.red = false;
                            xp.red = true;
                            root = rotateRight(root, xp);
                            xpl = (xp = x.parent) == null ? null : xp.left;
                        }
                        if (xpl == null)
                            x = xp;
                        else {
                            TreeNode<K, V> sl = xpl.left, sr = xpl.right;
                            if ((sl == null || !sl.red) &&
                                    (sr == null || !sr.red)) {
                                xpl.red = true;
                                x = xp;
                            } else {
                                if (sl == null || !sl.red) {
                                    if (sr != null)
                                        sr.red = false;
                                    xpl.red = true;
                                    root = rotateLeft(root, xpl);
                                    xpl = (xp = x.parent) == null ?
                                            null : xp.left;
                                }
                                if (xpl != null) {
                                    xpl.red = (xp == null) ? false : xp.red;
                                    if ((sl = xpl.left) != null)
                                        sl.red = false;
                                }
                                if (xp != null) {
                                    xp.red = false;
                                    root = rotateRight(root, xp);
                                }
                                x = root;
                            }
                        }
                    }
                }
            }
    
            /**
             * Recursive invariant check
             */
            static <K, V> boolean checkInvariants(TreeNode<K, V> t) {
                TreeNode<K, V> tp = t.parent, tl = t.left, tr = t.right,
                        tb = t.prev, tn = (TreeNode<K, V>) t.next;
                if (tb != null && tb.next != t)
                    return false;
                if (tn != null && tn.prev != t)
                    return false;
                if (tp != null && t != tp.left && t != tp.right)
                    return false;
                if (tl != null && (tl.parent != t || tl.hash > t.hash))
                    return false;
                if (tr != null && (tr.parent != t || tr.hash < t.hash))
                    return false;
                if (t.red && tl != null && tl.red && tr != null && tr.red)
                    return false;
                if (tl != null && !checkInvariants(tl))
                    return false;
                if (tr != null && !checkInvariants(tr))
                    return false;
                return true;
            }
        }
    
    }
    View Code

     未完待续....

     

      

      

  • 相关阅读:
    如何利用 iTunes 把 m4a/wav 文件转成 MP3 格式
    The best way to learn a programming language
    琼瑶哀悼丈夫去世
    与“芯片”相关的专业有哪些?
    君子使物,不为物使
    SRID (空间引用识别号, 坐标系)【转】
    编码
    test
    剪贴板神器:Ditto
    写Markdown博客时遇到的一些问题
  • 原文地址:https://www.cnblogs.com/z-qinfeng/p/12115647.html
Copyright © 2020-2023  润新知