• hive------ Group by、join、distinct等实现原理


    1. Hive 的 distribute by

           Order by 能够预期产生完全排序的结果,但是它是通过只用一个reduce来做到这点的。所以对于大规模的数据集它的效率非常低。在很多情况下,并不需要全局排序,此时可以换成Hive的非标准扩展sort by。Sort by为每个reducer产生一个排序文件。在有些情况下,你需要控制某个特定行应该到哪个reducer,通常是为了进行后续的聚集操作。Hive的distribute by 子句可以做这件事。

    // 根据年份和气温对气象数据进行排序,以确保所有具有相同年份的行最终都在一个reducer分区中  

    from record2  

    select year, temperature  

    distribute by year  

    sort by year asc, temperature desc;  

    2. Distinct 的实现

    准备数据

    语句

    SELECT COUNT, COUNT(DISTINCT uid) FROM logs GROUP BY COUNT;
    hive> SELECT * FROM logs;
    OK
    a	苹果	3
    a	橙子	3
    a	烧鸡	1
    b	烧鸡	3
     
    hive> SELECT COUNT, COUNT(DISTINCT uid) FROM logs GROUP BY COUNT;

    根据count分组,计算独立用户数。

    计算过程

    hive-distinct-cal

    1. 第一步先在mapper计算部分值,会以count和uid作为key,如果是distinct并且之前已经出现过,则忽略这条计算。第一步是以组合为key,第二步是以count为key.
    2. ReduceSink是在mapper.close()时才执行的,在GroupByOperator.close()时,把结果输出。注意这里虽然key是count和uid,但是在reduce时分区是按count来的!
    3. 第一步的distinct计算的值没用,要留到reduce计算的才准确。这里只是减少了key组合相同的行。不过如果是普通的count,后面是会合并起来的。
    4. distinct通过比较lastInvoke判断要不要+1(因为在reduce是排序过了的,所以判断distict的字段变了没有,如果没变,则不+1)

    Operator

    hive-distinct-op

    Explain

    hive> explain select count, count(distinct uid) from logs group by count;
    OK
    ABSTRACT SYNTAX TREE:
      (TOK_QUERY (TOK_FROM (TOK_TABREF (TOK_TABNAME logs))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (TOK_TABLE_OR_COL count)) (TOK_SELEXPR (TOK_FUNCTIONDI count (TOK_TABLE_OR_COL uid)))) (TOK_GROUPBY (TOK_TABLE_OR_COL count))))
     
    STAGE DEPENDENCIES:
      Stage-1 is a root stage
      Stage-0 is a root stage
     
    STAGE PLANS:
      Stage: Stage-1
        Map Reduce
          Alias -> Map Operator Tree:
            logs 
              TableScan //表扫描
                alias: logs
                Select Operator//列裁剪,取出uid,count字段就够了
                  expressions:
                        expr: count
                        type: int
                        expr: uid
                        type: string
                  outputColumnNames: count, uid
                  Group By Operator //先来map聚集
                    aggregations:
                          expr: count(DISTINCT uid) //聚集表达式
                    bucketGroup: false
                    keys:
                          expr: count
                          type: int
                          expr: uid
                          type: string
                    mode: hash //hash方式
                    outputColumnNames: _col0, _col1, _col2
                    Reduce Output Operator
                      key expressions: //输出的键
                            expr: _col0 //count
                            type: int
                            expr: _col1 //uid
                            type: string
                      sort order: ++
                      Map-reduce partition columns: //这里是按group by的字段分区的
                            expr: _col0 //这里表示count
                            type: int
                      tag: -1
                      value expressions:
                            expr: _col2
                            type: bigint
          Reduce Operator Tree:
            Group By Operator //第二次聚集
              aggregations:
                    expr: count(DISTINCT KEY._col1:0._col0) //uid:count
              bucketGroup: false
              keys:
                    expr: KEY._col0 //count
                    type: int
              mode: mergepartial //合并
              outputColumnNames: _col0, _col1
              Select Operator //列裁剪
                expressions:
                      expr: _col0
                      type: int
                      expr: _col1
                      type: bigint
                outputColumnNames: _col0, _col1
                File Output Operator //输出结果到文件
                  compressed: false
                  GlobalTableId: 0
                  table:
                      input format: org.apache.hadoop.mapred.TextInputFormat
                      output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
     
      Stage: Stage-0
        Fetch Operator
          limit: -1

    3.
    Group By 的实现
    数据准备
    SELECT uid, SUM(COUNT) FROM logs GROUP BY uid;
    hive> SELECT * FROM logs;
    a	苹果	5
    a	橙子	3
    a      苹果   2
    b	烧鸡	1
     
    hive> SELECT uid, SUM(COUNT) FROM logs GROUP BY uid;
    a	10
    b	1

    计算过程

    hive-groupby-cal
    默认设置了hive.map.aggr=true,所以会在mapper端先group by一次,最后再把结果merge起来,为了减少reducer处理的数据量。注意看explain的mode是不一样的。mapper是hash,reducer是mergepartial。如果把hive.map.aggr=false,那将groupby放到reducer才做,他的mode是complete.

    Operator

    hive-groupby-op

    Explain

    hive> explain SELECT uid, sum(count) FROM logs group by uid;
    OK
    ABSTRACT SYNTAX TREE:
      (TOK_QUERY (TOK_FROM (TOK_TABREF (TOK_TABNAME logs))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (TOK_TABLE_OR_COL uid)) (TOK_SELEXPR (TOK_FUNCTION sum (TOK_TABLE_OR_COL count)))) (TOK_GROUPBY (TOK_TABLE_OR_COL uid))))
     
    STAGE DEPENDENCIES:
      Stage-1 is a root stage
      Stage-0 is a root stage
     
    STAGE PLANS:
      Stage: Stage-1
        Map Reduce
          Alias -> Map Operator Tree:
            logs 
              TableScan // 扫描表
                alias: logs
                Select Operator //选择字段
                  expressions:
                        expr: uid
                        type: string
                        expr: count
                        type: int
                  outputColumnNames: uid, count
                  Group By Operator //这里是因为默认设置了hive.map.aggr=true,会在mapper先做一次聚合,减少reduce需要处理的数据
                    aggregations:
                          expr: sum(count) //聚集函数
                    bucketGroup: false
                    keys: //键
                          expr: uid
                          type: string
                    mode: hash //hash方式,processHashAggr()
                    outputColumnNames: _col0, _col1
                    Reduce Output Operator //输出key,value给reducer
                      key expressions:
                            expr: _col0
                            type: string
                      sort order: +
                      Map-reduce partition columns:
                            expr: _col0
                            type: string
                      tag: -1
                      value expressions:
                            expr: _col1
                            type: bigint
          Reduce Operator Tree:
            Group By Operator
     
              aggregations:
                    expr: sum(VALUE._col0)
    //聚合
              bucketGroup: false
              keys:
                    expr: KEY._col0
                    type: string
              mode: mergepartial //合并值
              outputColumnNames: _col0, _col1
              Select Operator //选择字段
                expressions:
                      expr: _col0
                      type: string
                      expr: _col1
                      type: bigint
                outputColumnNames: _col0, _col1
                File Output Operator //输出到文件
                  compressed: false
                  GlobalTableId: 0
                  table:
                      input format: org.apache.hadoop.mapred.TextInputFormat
                      output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
     
      Stage: Stage-0
        Fetch Operator
          limit: -1
    4. join原理 

    准备数据

    语句
    SELECT a.uid,a.name,b.age FROM logs a JOIN users b ON (a.uid=b.uid);
    我们希望的结果是把users表join进来获取age字段。

    hive> SELECT * FROM logs;
    OK
    a	苹果	5
    a	橙子	3
    b	烧鸡	1
     
    hive> SELECT * FROM users;
    OK
    a	23
    b	21
     
    hive> SELECT a.uid,a.name,b.age FROM logs a JOIN users b ON (a.uid=b.uid);
    a	苹果	23
    a	橙子	23
    b	烧鸡	21

    计算过程

    hive-join-cal

    1. key这里后面的数字是tag,后面在reduce阶段用来区分来自于那个表的数据。tag是附属在key后面的。那为什么会把a(0)和a(1)汇集在一起了呢,是因为对先对a求了hashcode,设在了HiveKey上,所以同一个key还是在一起的。
    2. Map阶段只是拆分key和value。
    3. reduce阶段主要看它是如何把它合并起来了,从图上可以直观的看到,其实就是把tag=1的内容,都加到tag=0的后面,就是这么简单。
    4. 代码实现上,就是先临时用个变量把值存储起来在storage里面, storage(0) = [{a, 苹果}, {a, 橙子}] storage(1) = [{23}],当key变化(如a变为b)或全部结束时,会调用endGroup()方法,把内容合并起来。变成[{a,苹果,23}, {a, 橙子,23}]

    Operator

    hive-join-op

    Explain

    hive> explain SELECT a.uid,a.name,b.age FROM logs a JOIN users b ON (a.uid=b.uid);
    OK
     
    //语法树
    ABSTRACT SYNTAX TREE:
      (TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF (TOK_TABNAME logs) a) (TOK_TABREF (TOK_TABNAME users) b) (= (. (TOK_TABLE_OR_COL a) uid) (. (TOK_TABLE_OR_COL b) uid)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_SELEXPR (. (TOK_TABLE_OR_COL a) uid)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL a) name)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL b) age)))))
     
    //阶段
    STAGE DEPENDENCIES:
      Stage-1 is a root stage
      Stage-0 is a root stage
     
    STAGE PLANS:
      Stage: Stage-1
        Map Reduce
          Alias -> Map Operator Tree: //mapper阶段
            a 
              TableScan //扫描表, 就只是一行一行的传递下去而已
                alias: a
                Reduce Output Operator //输出给reduce的内容
                  key expressions: // key啦,这里的key是uid,就是我们写在ON子句那个,你可以试试加多几个条件
                        expr: uid
                        type: string
                  sort order: + //排序
                  Map-reduce partition columns://分区字段,貌似是和key一样的
                        expr: uid
                        type: string
                  tag: 0 //用来区分这个key是来自哪个表的
                  value expressions: //reduce用到的value字段
                        expr: uid
                        type: string
                        expr: name
                        type: string
            b 
              TableScan //扫描表, 就只是一行一行的传递下去而已
                alias: b
                Reduce Output Operator //输出给reduce的内容
                  key expressions: //key
                        expr: uid
                        type: string
                  sort order: +
                  Map-reduce partition columns: //分区字段
                        expr: uid
                        type: string
                  tag: 1 //用来区分这个key是来自哪个表的
                  value expressions: //值
                        expr: age
                        type: int
          Reduce Operator Tree: // reduce阶段
            Join Operator // JOIN的Operator
              condition map:
                   Inner Join 0 to 1 // 内连接0和1表
              condition expressions: // 第0个表有两个字段,分别是uid和name, 第1个表有一个字段age
     {VALUE._col0} {VALUE._col1}
     {VALUE._col1}
              handleSkewJoin: false //是否处理倾斜join,如果是,会分为两个MR任务
              outputColumnNames: _col0, _col1, _col6 //输出字段
              Select Operator //列裁剪(我们sql写的select字段)
                expressions:
                      expr: _col0
                      type: string
                      expr: _col1
                      type: string
                      expr: _col6
                      type: int
                outputColumnNames: _col0, _col1, _col2
                File Output Operator //把结果输出到文件
                  compressed: false
                  GlobalTableId: 0
                  table:
                      input format: org.apache.hadoop.mapred.TextInputFormat
                      output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat
     
      Stage: Stage-0
        Fetch Operator
          limit: -1

    可以看到里面都是一个个Operator顺序的执行下来

     
  • 相关阅读:
    C#实现按键精灵的'找图' '找色' '找字'的功能
    Amazon SES SPF和DKIM设置教程
    你应该知道的最好Webmail邮件客户端,
    8款世界级Webmail工具推荐
    AWS邮件通知服务:实时监控邮件状态
    XenServer:使用XenCenter开设VPS(多图完整版)
    Thinkpad机器BIOS下清除安全芯片和指纹数据的方法
    在ASP.NET Web Application中通过SOAP协议调用Bing搜索服务
    怎么申请 bing api key
    linux挂载硬盘失败,报错!
  • 原文地址:https://www.cnblogs.com/yyy-blog/p/7077504.html
Copyright © 2020-2023  润新知