• 51Nod 1667 概率好题


    题目传送门

      无障碍通道

      有障碍通道

    题目大意

      若$L_{i}leqslant x_{i} leqslant R_{i}$,求$sum x_{i} = 0$以及$sum x_{i} < 0$的方案数。$(L_{i}R_{i} geqslant 0)$(好吧。是概率)

      听完题解感觉自己是个傻逼。组合数学白学了。

      如果$L_{i} eq 0$,那么取$a_{i} = x_{i} - L_{i}$。

      然后容斥。

      如何处理$sum x_{i} < 0$?加一个物品$0leqslant x_{n + 1} < infty $。

      然后做完了。

    Code

      1 /**
      2  * 51nod
      3  * Problem#1667
      4  * Accepted
      5  * Time: 187ms
      6  * Memory: 2052k
      7  */
      8 #include <bits/stdc++.h>
      9 using namespace std;
     10 typedef bool boolean;
     11 
     12 const int M = 1e9 + 7;
     13 const signed int inf = (signed) (~0u >> 1);
     14 
     15 void exgcd(int a, int b, int& x, int& y) {
     16     if (!b)
     17         x = 1, y = 0;
     18     else {
     19         exgcd(b, a % b, y, x);
     20         y -= (a / b) * x;
     21     }
     22 }
     23 
     24 int inv(int a, int n) {
     25     int x, y;
     26     exgcd(a, n, x, y);
     27     return (x < 0) ? (x + n) : (x);
     28 }
     29 
     30 int add(int a, int b) {
     31     a += b;
     32     if (a < 0)
     33         a += M;
     34     if (a >= M)
     35         a -= M;
     36     return a;
     37 }
     38 
     39 int invs[25];
     40 int n, m;
     41 int K = 0;
     42 int rw = 0, req = 0, rl, rall = 0;
     43 int ar[20];
     44 
     45 inline void prepare() {
     46     for (int i = 1; i <= 20; i++)
     47         invs[i] = inv(i, M);
     48 }
     49 
     50 inline void init() {
     51     scanf("%d", &n);
     52     rw = req = 0, rall = 1, K = 0;
     53     for (int i = 0, l, r; i < n; i++)
     54         scanf("%d%d", &l, &r), ar[i] = r - l, K -= l, rall = rall * 1ll * (ar[i] + 1) % M;
     55     scanf("%d", &m);
     56     for (int i = 0, l, r; i < m; i++)
     57         scanf("%d%d", &l, &r), ar[n + i] = r - l, K += r, rall = rall * 1ll * (ar[n + i] + 1) % M;
     58     n += m;
     59 }
     60 
     61 int C(int n, int m) {
     62     int rt = 1;
     63     for (int i = 0; i < m; i++)
     64         rt = rt * 1ll * (n - i) % M;
     65     for (int i = 1; i <= m; i++)
     66         rt = rt * 1ll * invs[i] % M;
     67     return rt;
     68 }
     69 
     70 int calc(int dep, int sign, int K) {
     71     if (K < 0)
     72         return 0;
     73     if (dep == -1)
     74         return sign * C(K + n - 1, n - 1);
     75     return add(calc(dep - 1, -sign, K - ar[dep] - 1), calc(dep - 1, sign, K));
     76 }
     77 
     78 inline void solve() {
     79     req = calc(n - 1, 1, K);
     80     ar[n++] = inf;
     81     rw = calc(n - 1, 1, K);
     82     rl = add(rall, -rw);
     83     rw = add(rw, -req);
     84 //    cerr << rl << " " << req << " " << rw << endl; 
     85     rw = rw * 1ll * inv(rall, M) % M;
     86     req = req * 1ll * inv(rall, M) % M;
     87     rl = rl * 1ll * inv(rall, M) % M;
     88     printf("%d %d %d
    ", rl, req, rw);
     89 }
     90 
     91 int T;
     92 int main() {
     93     scanf("%d", &T);
     94     prepare();
     95     while (T--) {
     96         init();
     97         solve();
     98     }
     99     return 0;
    100 }
  • 相关阅读:
    [BZOJ 1012][JSOI2008]最大数maxnumber(线段树)
    [BZOJ 1011][HNOI2008]遥远的行星(奇技淫巧)
    [BZOJ 1010][HNOI2008]玩具装箱toy(斜率优化Dp)
    [HDU 3507]Print Article(斜率优化Dp)
    [BZOJ 1006][HNOI2008]神奇的国度(MCS弦图的染色)
    [ZOJ 1015]Fishing Net(MCS弦图的判定)
    进程的状态及转换
    程序、进程、线程的概念与比较
    ES6 模块化规范
    DNS域名解析过程(详细)
  • 原文地址:https://www.cnblogs.com/yyf0309/p/9417609.html
Copyright © 2020-2023  润新知