• poj 1191 棋盘分割


    题目大意:

    有一个8*8的正方形棋盘,每个格子有相对应的值,对于这个棋盘,我们可以割(n-1)次,使得切割后的n块棋盘权值和的标准差最小。

    同时每次切割后下一次切割只能对上次被切割的其中一块进行切割,另一块就不能够再被切割了。

    思路:

    dp

    首先可以注意到棋盘非常小,是8*8,n<15也并不大,先利用方差来计算,最后在用标准差

    dp(x1,y1,x2,y2,k)表示(x1,y1) 为左上角(x2,y2)为右下角的矩形切k刀的答案。

    首先,我们可以把方差的公式化简一下:
       1/n(x1^2+x2^2+...+xn^2-2*x1*avg-2*x2*avg-...-2*xn*avg+n*avg*avg)

    =1/n(x1^2+x2^2+...+xn^2-2*avg*sum+sum*avg)

    =1/n(x1^2+x2^2+...+xn^2-n*avg*avg)

    =(x1^2+x2^2+...+xn^2)/n-avg^2

    因为所有矩阵的和一定,所以我们先预处理出avg,然后dp表示每块的答案就好了

    先预处理每块不切的情况 即dp(x1,y1,x2,y2,0)=sum^2

    然后最外圈套k

    枚举每一块的切割线以及左右两边哪边是新切的

    最后把dp(0,0,7,7,n-1)带入公式

    就做完了哈哈哈

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cmath>
     4 #include<cstring>
     5 #include<cstdlib>
     6 #include<algorithm>
     7 #include<iomanip>
     8 #include<vector>
     9 #include<queue>
    10 #define long long ll
    11 #define inf 214748364
    12 using namespace std;
    13 int n,map[9][9],sum[9][9];
    14 int f[9][9][9][9][17];
    15 double avg;
    16 int main()
    17 {
    18     scanf("%d",&n);
    19     for(int i=0;i<8;i++)
    20         for(int j=0;j<8;j++)
    21         {
    22             scanf("%d",&map[i][j]);
    23             sum[i][j]=sum[i][j-1]+sum[i-1][j]-sum[i-1][j-1]+map[i][j];
    24             avg+=map[i][j];
    25         }
    26     avg=1.0*avg/n;
    27     for(int i1=0;i1<8;i1++)
    28         for(int j1=0;j1<8;j1++)
    29             for(int i2=i1;i2<8;i2++)
    30                 for(int j2=j1;j2<8;j2++)
    31                 {
    32                     int s=sum[i2][j2]-sum[i1-1][j2]-sum[i2][j1-1]+sum[i1-1][j1-1];
    33                     f[i1][j1][i2][j2][0]=s*s;
    34                 }
    35     for(int k=1;k<n;k++)
    36         for(int i1=0;i1<8;i1++)
    37             for(int j1=0;j1<8;j1++)
    38                 for(int i2=i1;i2<8;i2++)
    39                     for(int j2=j1;j2<8;j2++)
    40                     {
    41                         int d=1<<30;
    42                         for(int o=i1;o<i2;o++) 
    43                         {
    44                             d=min(f[i1][j1][o][j2][0]+f[o+1][j1][i2][j2][k-1],d);
    45                             d=min(f[i1][j1][o][j2][k-1]+f[o+1][j1][i2][j2][0],d);
    46                         }
    47                         for(int o=j1;o<j2;o++) 
    48                         {
    49                             d=min(f[i1][o+1][i2][j2][0]+f[i1][j1][i2][o][k-1],d);
    50                             d=min(f[i1][o+1][i2][j2][k-1]+f[i1][j1][i2][o][0],d);
    51                         }
    52                         f[i1][j1][i2][j2][k]=d;
    53                     }
    54     double ans=f[0][0][7][7][n-1];
    55     ans=sqrt(ans/n-avg*avg);
    56     printf("%.3lf",ans);
    57 }
    View Code
  • 相关阅读:
    python之基础知识篇
    OpenGL 着色器管理类 Shader
    OpenGL 彩色三角形
    OpenGL 你好,三角形 练习一 二 三
    OpenGL 矩阵绘画
    OpenGL 第一个三角形!!!!
    OpenGL 读取,使用 .vert .frag 着色器 文件 C++
    C++ 一定要使用strcpy_s()函数 等来操作方法c_str()返回的指针
    OpenGL 入门指南(配置GLFW ,着色语言高亮,以及一些常见问题)
    汽车加工厂
  • 原文地址:https://www.cnblogs.com/yyc-jack-0920/p/7217077.html
Copyright © 2020-2023  润新知