• YOLOV5——使用 k-means 聚类 anchorbox 数据


    训练的标注数据格式如下:

    [
        {
            "name": "235_2_t20201127123021723_CAM2.jpg",
            "image_height": 6000,
            "image_width": 8192,
            "category": 5,
            "bbox": [
                1876.06,
                998.04,
                1883.06,
                1004.04
            ]
        },
        {
            "name": "235_2_t20201127123021723_CAM2.jpg",
            "image_height": 6000,
            "image_width": 8192,
            "category": 5,
            "bbox": [
                1655.06,
                1094.04,
                1663.06,
                1102.04
            ]
        }
    ]

    聚类anchorbox只需要 bbox 中的左上角与右下角的 x,y 数据

    k-means 聚类代码:

    import numpy as np
    import json
    import os
    from PIL import Image
    
    
    def iou(box, clusters):
        """
       计算 IOU
        param:
            box: tuple or array, shifted to the origin (i. e. width and height)
            clusters: numpy array of shape (k, 2) where k is the number of clusters
        return:
            numpy array of shape (k, 0) where k is the number of clusters
        """
        x = np.minimum(clusters[:, 0], box[0])
        y = np.minimum(clusters[:, 1], box[1])
        if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:
            raise ValueError("Box has no area")
    
        intersection = x * y
        box_area = box[0] * box[1]
        cluster_area = clusters[:, 0] * clusters[:, 1]
    
        iou_ = intersection / (box_area + cluster_area - intersection + 1e-10)
    
        return iou_
    
    
    #  计算框的 numpy 数组和 k 个簇之间的平均并集交集(IoU)。
    def avg_iou(boxes, clusters):
        """
        param:
            boxes: numpy array of shape (r, 2), where r is the number of rows
            clusters: numpy array of shape (k, 2) where k is the number of clusters
        return:
            average IoU as a single float
        """
        return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])
    
    
    # 将所有框转换为原点。
    def translate_boxes(boxes):
        """
        param:
            boxes: numpy array of shape (r, 4)
        return:
        numpy array of shape (r, 2)
        """
        new_boxes = boxes.copy()
        for row in range(new_boxes.shape[0]):
            new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0])
            new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1])
        return np.delete(new_boxes, [0, 1], axis=1)
    
    
    # 使用联合上的交集(IoU)度量计算k均值聚类。
    def kmeans(boxes, k, dist=np.median):
        """
        param:
            boxes: numpy array of shape (r, 2), where r is the number of rows
            k: number of clusters
            dist: distance function
        return:
            numpy array of shape (k, 2)
        """
        rows = boxes.shape[0]
    
        distances = np.empty((rows, k))
        last_clusters = np.zeros((rows,))
    
        np.random.seed()
    
        # the Forgy method will fail if the whole array contains the same rows
        clusters = boxes[np.random.choice(rows, k, replace=False)]  # 初始化k个聚类中心(方法是从原始数据集中随机选k个)
    
        while True:
            for row in range(rows):
                # 定义的距离度量公式:d(box,centroid)=1-IOU(box,centroid)。到聚类中心的距离越小越好,但IOU值是越大越好,所以使用 1 - IOU,这样就保证距离越小,IOU值越大。
                distances[row] = 1 - iou(boxes[row], clusters)
            # 将标注框分配给“距离”最近的聚类中心(也就是这里代码就是选出(对于每一个box)距离最小的那个聚类中心)。
            nearest_clusters = np.argmin(distances, axis=1)
            # 直到聚类中心改变量为0(也就是聚类中心不变了)。
            if (last_clusters == nearest_clusters).all():
                break
            # 更新聚类中心(这里把每一个类的中位数作为新的聚类中心)
            for cluster in range(k):
                clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)
    
            last_clusters = nearest_clusters
    
        return clusters
    
    
    # 获取图片宽高
    def get_image_width_high(full_image_name):
        image = Image.open(full_image_name)
        image_width, image_high = image.size[0], image.size[1]
        return image_width, image_high
    
    
    # 读取 json 文件中的标注数据
    def parse_label_json(label_path):
        with open(label_path, 'r') as f:
            label = json.load(f)
        result = []
        for line in label:
            bbox = line['bbox']
            x_label_min, y_label_min, x_label_max, y_label_max = bbox[0], bbox[1], bbox[2], bbox[3]
            # 计算边框的大小
            width = x_label_max - x_label_min
            height = y_label_max - y_label_min
            assert width > 0
            assert height > 0
            result.append([width, height])
        result = np.asarray(result)
        return result
    
    
    # 读取 txt 标注数据文件
    def parse_label_txt(label_path):
        all_label = os.listdir(label_path)
        result = []
        for i in range(len(all_label)):
            full_label_name = os.path.join(label_path, all_label[i])
            print(full_label_name)
            # 分离文件名和文件后缀
            label_name, label_extension = os.path.splitext(all_label[i])
            full_image_name = os.path.join(label_path.replace('labels', 'images'), label_name + '.jpg')
            image_width, image_high = get_image_width_high(full_image_name)
            fp = open(full_label_name, mode="r")
            lines = fp.readlines()
            for line in lines:
                array = line.split()
                x_label_min = (float(array[1]) - float(array[3]) / 2) * image_width
                x_label_max = (float(array[1]) + float(array[3]) / 2) * image_width
                y_label_min = (float(array[2]) - float(array[4]) / 2) * image_high
                y_label_max = (float(array[2]) + float(array[4]) / 2) * image_high
                # 计算边框的大小
                width = x_label_max - x_label_min
                height = y_label_max - y_label_min
                assert width > 0
                assert height > 0
                result.append([round(width, 2), round(height, 2)])
        result = np.asarray(result)
    
        return result
    
    
    def get_kmeans(label, cluster_num=9):
    
        anchors = kmeans(label, cluster_num)
        ave_iou = avg_iou(label, anchors)
    
        anchors = anchors.astype('int').tolist()
    
        anchors = sorted(anchors, key=lambda x: x[0] * x[1])
    
        return anchors, ave_iou
    
    
    if __name__ == '__main__':
        # 读取 json 格式的标注数据
        label_path = "tile_round1_train_20201231/train_annos.json"
        label_result = parse_label_json(label_path)
    
        # 读取 txt 格式的标注数据
        # label_path = "../image_data/seed/labels/"    # seed/images/ 内是对应图片文件
        # label_result = parse_label_txt(label_path)
    
        anchors, ave_iou = get_kmeans(label_result, 9)
    
        anchor_string = ''
        for anchor in anchors:
            anchor_string += '{},{}, '.format(anchor[0], anchor[1])
        anchor_string = anchor_string[:-2]
    
        print(f'anchors are: {anchor_string}')
        print(f'the average iou is: {ave_iou}')
    

      

      

    每次运行的结果都会有点不大一样

    参考:https://blog.csdn.net/zuliang001/article/details/90551798

  • 相关阅读:
    python 对xls写入信息
    Python 字符串前面加u,r,b,f的含义
    inner join 与 left join 之间的区别
    时间戳转换成日期展示的方法 且 搜索范围
    Python与C/C++相互调用(python2 调c++那个试了ok)
    爆库记录(X-Forwarded-For注入漏洞实战 记录)
    笔记
    墨者学习安全测试的网站(看起来很不错的样子 有空看看)
    sqlmap开源 测试sql注入的工具 各种参考链接
    菜鸟浅谈——web安全测试(这篇不错有空看看)
  • 原文地址:https://www.cnblogs.com/yxyun/p/14253168.html
Copyright © 2020-2023  润新知