• C++STL源代码学习(之slist篇)


    ///stl_slist.h

    ///list为双向循环链表,slist为单向链表。某些操作效率更高

    ///slist是SGI额外提供的单向链表,不属于C++标准
    
    struct _Slist_node_base
    {
      _Slist_node_base* _M_next;
    };
    
    ///将__new_node链在__prev_node后面
    inline _Slist_node_base*
    __slist_make_link(_Slist_node_base* __prev_node,
                      _Slist_node_base* __new_node)
    {
      __new_node->_M_next = __prev_node->_M_next;
      __prev_node->_M_next = __new_node;
      return __new_node;
    }
    
    ///查找__node的前一个结点
    inline _Slist_node_base*
    __slist_previous(_Slist_node_base* __head,
                     const _Slist_node_base* __node)
    {
      while (__head && __head->_M_next != __node)
        __head = __head->_M_next;
      return __head;
    }
    
    inline const _Slist_node_base*
    __slist_previous(const _Slist_node_base* __head,
                     const _Slist_node_base* __node)
    {
      while (__head && __head->_M_next != __node)
        __head = __head->_M_next;
      return __head;
    }
    
    ///将(__before_first,__before_last]从原位置摘下来,插入到__pos之后
    inline void __slist_splice_after(_Slist_node_base* __pos,
                                     _Slist_node_base* __before_first,
                                     _Slist_node_base* __before_last)
    {
      if (__pos != __before_first && __pos != __before_last) {
        _Slist_node_base* __first = __before_first->_M_next;
        _Slist_node_base* __after = __pos->_M_next;
        __before_first->_M_next = __before_last->_M_next;
        __pos->_M_next = __first;
        __before_last->_M_next = __after;
      }
    }
    
    ///将(__head,0)从原位置摘下来,插入__pos之后+
    inline void
    __slist_splice_after(_Slist_node_base* __pos, _Slist_node_base* __head)
    {
      _Slist_node_base* __before_last = __slist_previous(__head, 0);-
      if (__before_last != __head) {
        _Slist_node_base* __after = __pos->_M_next;
        __pos->_M_next = __head->_M_next;
        __head->_M_next = 0;
        __before_last->_M_next = __after;
      }
    }
    
    ///从node開始,将整个链表翻转
    inline _Slist_node_base* __slist_reverse(_Slist_node_base* __node)
    {
      _Slist_node_base* __result = __node;
      __node = __node->_M_next;
      __result->_M_next = 0;
      while(__node) {
        _Slist_node_base* __next = __node->_M_next;
        __node->_M_next = __result;   ///将_M_next指向其前一个结点
        __result = __node;
        __node = __next;
      }
      return __result;
    }
    
    ///计算[__node,0)的节点数
    inline size_t __slist_size(_Slist_node_base* __node)
    {
      size_t __result = 0;
      for ( ; __node != 0; __node = __node->_M_next)
        ++__result;
      return __result;
    }
    
    template <class _Tp>
    struct _Slist_node : public _Slist_node_base
    {
      _Tp _M_data;
    };
    
    struct _Slist_iterator_base
    {
      typedef size_t               size_type;
      typedef ptrdiff_t            difference_type;
      typedef forward_iterator_tag iterator_category;   ///前向迭代器
    
      _Slist_node_base* _M_node;
    
      _Slist_iterator_base(_Slist_node_base* __x) : _M_node(__x) {}
      void _M_incr() { _M_node = _M_node->_M_next; }
    
      bool operator==(const _Slist_iterator_base& __x) const {
        return _M_node == __x._M_node;
      }
      bool operator!=(const _Slist_iterator_base& __x) const {
        return _M_node != __x._M_node;
      }
    };
    
    template <class _Tp, class _Ref, class _Ptr>
    struct _Slist_iterator : public _Slist_iterator_base
    {
      typedef _Slist_iterator<_Tp, _Tp&, _Tp*>             iterator;
      typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
      typedef _Slist_iterator<_Tp, _Ref, _Ptr>             _Self;
    
      typedef _Tp              value_type;
      typedef _Ptr             pointer;
      typedef _Ref             reference;
      typedef _Slist_node<_Tp> _Node;
    
      _Slist_iterator(_Node* __x) : _Slist_iterator_base(__x) {}
      _Slist_iterator() : _Slist_iterator_base(0) {}
      _Slist_iterator(const iterator& __x) : _Slist_iterator_base(__x._M_node) {}
    
      reference operator*() const { return ((_Node*) _M_node)->_M_data; }
      pointer operator->() const { return &(operator*()); }
    
      _Self& operator++()
      {
        _M_incr();
        return *this;
      }
      _Self operator++(int)
      {
        _Self __tmp = *this;
        _M_incr();
        return __tmp;
      }
    };
    
    inline ptrdiff_t* distance_type(const _Slist_iterator_base&) {
      return 0;
    }
    
    inline forward_iterator_tag iterator_category(const _Slist_iterator_base&) {
      return forward_iterator_tag();
    }
    
    template <class _Tp, class _Ref, class _Ptr>
    inline _Tp* value_type(const _Slist_iterator<_Tp, _Ref, _Ptr>&) {
      return 0;
    }
    
    template <class _Tp, class _Alloc>
    struct _Slist_base {
      typedef _Alloc allocator_type;
      allocator_type get_allocator() const { return allocator_type(); }
    
      _Slist_base(const allocator_type&) { _M_head._M_next = 0; }
      ~_Slist_base() { _M_erase_after(&_M_head, 0); }  ///清空链表
    
    protected:
      typedef simple_alloc<_Slist_node<_Tp>, _Alloc> _Alloc_type;
    
      _Slist_node<_Tp>* _M_get_node() { return _Alloc_type::allocate(1); }
      void _M_put_node(_Slist_node<_Tp>* __p) { _Alloc_type::deallocate(__p, 1); }
    
      ///删除__pos->_M_next
      _Slist_node_base* _M_erase_after(_Slist_node_base* __pos)
      {
        _Slist_node<_Tp>* __next = (_Slist_node<_Tp>*) (__pos->_M_next);
        _Slist_node_base* __next_next = __next->_M_next;
        __pos->_M_next = __next_next;
        destroy(&__next->_M_data);
        _M_put_node(__next);
        return __next_next;
      }
    
      _Slist_node_base* _M_erase_after(_Slist_node_base*, _Slist_node_base*);
    
    protected:
      _Slist_node_base _M_head;  ///不存储不论什么数据元素的头结点
    };
    
    ///删除(__before_first,__last_node)
    template <class _Tp, class _Alloc>
    _Slist_node_base*
    _Slist_base<_Tp,_Alloc>::_M_erase_after(_Slist_node_base* __before_first,
                                            _Slist_node_base* __last_node) {
      _Slist_node<_Tp>* __cur = (_Slist_node<_Tp>*) (__before_first->_M_next);
      while (__cur != __last_node) {
        _Slist_node<_Tp>* __tmp = __cur;
        __cur = (_Slist_node<_Tp>*) __cur->_M_next;
        destroy(&__tmp->_M_data);
        _M_put_node(__tmp);
      }
      __before_first->_M_next = __last_node;
      return __last_node;
    }
    
    template <class _Tp, class _Alloc = Stl_Default_Alloc>
    class slist : private _Slist_base<_Tp,_Alloc>
    {
      __STL_CLASS_REQUIRES(_Tp, _Assignable);
    
    private:
      typedef _Slist_base<_Tp,_Alloc> _Base;
    public:
      typedef _Tp                value_type;
      typedef value_type*       pointer;
      typedef const value_type* const_pointer;
      typedef value_type&       reference;
      typedef const value_type& const_reference;
      typedef size_t            size_type;
      typedef ptrdiff_t         difference_type;
    
      typedef _Slist_iterator<_Tp, _Tp&, _Tp*>             iterator;
      typedef _Slist_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
    
      typedef typename _Base::allocator_type allocator_type;
      allocator_type get_allocator() const { return _Base::get_allocator(); }
    
    private:
      typedef _Slist_node<_Tp>      _Node;
      typedef _Slist_node_base      _Node_base;
      typedef _Slist_iterator_base  _Iterator_base;
    
        ///构造一个数据元素为x的结点
      _Node* _M_create_node(const value_type& __x) {
        _Node* __node = this->_M_get_node();
        try {
          construct(&__node->_M_data, __x);
          __node->_M_next = 0;
        }catch(...){
            this->_M_put_node(__node);
        }
    
        return __node;
      }
    
      _Node* _M_create_node() {
        _Node* __node = this->_M_get_node();
        try {
          construct(&__node->_M_data);
          __node->_M_next = 0;
        }catch(...){
            this->_M_put_node(__node);
        }
    
        return __node;
      }
    
    public:
      explicit slist(const allocator_type& __a = allocator_type()) : _Base(__a) {}
    
      slist(size_type __n, const value_type& __x,
            const allocator_type& __a =  allocator_type()) : _Base(__a)
        { _M_insert_after_fill(&this->_M_head, __n, __x); }
    
      explicit slist(size_type __n) : _Base(allocator_type())
        { _M_insert_after_fill(&this->_M_head, __n, value_type()); }
    
    
      /// We don't need any dispatching tricks here, because _M_insert_after_range
      /// already does them.
      template <class _InputIterator>
      slist(_InputIterator __first, _InputIterator __last,
            const allocator_type& __a =  allocator_type()) : _Base(__a)
        { _M_insert_after_range(&this->_M_head, __first, __last); }
    
    
      slist(const slist& __x) : _Base(__x.get_allocator())
        { _M_insert_after_range(&this->_M_head, __x.begin(), __x.end()); }
    
      slist& operator= (const slist& __x);
    
      ~slist() {}    ///善后留给基类析构函数
    
    public:
    
      void assign(size_type __n, const _Tp& __val)
        { _M_fill_assign(__n, __val); }
    
      void _M_fill_assign(size_type __n, const _Tp& __val);
    
      template <class _InputIterator>
      void assign(_InputIterator __first, _InputIterator __last) {
        typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
        _M_assign_dispatch(__first, __last, _Integral());
      }
    
      template <class _Integer>
      void _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
        { _M_fill_assign((size_type) __n, (_Tp) __val); }
    
      template <class _InputIterator>
      void _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
                              __false_type);
    
    public:
    
      iterator begin() { return iterator((_Node*)this->_M_head._M_next); }
      const_iterator begin() const
        { return const_iterator((_Node*)this->_M_head._M_next);}
    
      iterator end() { return iterator(0); }
      const_iterator end() const { return const_iterator(0); }
    
      /// Experimental new feature: before_begin() returns a
      /// non-dereferenceable iterator that, when incremented, yields
      /// begin().  This iterator may be used as the argument to
      /// insert_after, erase_after, etc.  Note that even for an empty
      /// slist, before_begin() is not the same iterator as end().  It
      /// is always necessary to increment before_begin() at least once to
      /// obtain end().
      iterator before_begin() { return iterator((_Node*) &this->_M_head); }
      const_iterator before_begin() const
        { return const_iterator((_Node*) &this->_M_head); }
    
      size_type size() const { return __slist_size(this->_M_head._M_next); }
    
      size_type max_size() const { return size_type(-1); }
    
      bool empty() const { return this->_M_head._M_next == 0; }
    
      ///交换指针完毕
      void swap(slist& __x)
        { __STD::swap(this->_M_head._M_next, __x._M_head._M_next); }
    
    public:
    
      reference front() { return ((_Node*) this->_M_head._M_next)->_M_data; }
      const_reference front() const
        { return ((_Node*) this->_M_head._M_next)->_M_data; }
    
      void push_front(const value_type& __x)   {
        __slist_make_link(&this->_M_head, _M_create_node(__x));
      }
      void push_front() { __slist_make_link(&this->_M_head, _M_create_node()); }
    
      void pop_front() {
        _Node* __node = (_Node*) this->_M_head._M_next;
        this->_M_head._M_next = __node->_M_next;
        destroy(&__node->_M_data);
        this->_M_put_node(__node);
      }
    
      iterator previous(const_iterator __pos) {
        return iterator((_Node*) __slist_previous(&this->_M_head, __pos._M_node));
      }
      const_iterator previous(const_iterator __pos) const {
        return const_iterator((_Node*) __slist_previous(&this->_M_head,
                                                        __pos._M_node));
      }
    
    private:
      _Node* _M_insert_after(_Node_base* __pos, const value_type& __x) {
        return (_Node*) (__slist_make_link(__pos, _M_create_node(__x)));
      }
    
      _Node* _M_insert_after(_Node_base* __pos) {
        return (_Node*) (__slist_make_link(__pos, _M_create_node()));
      }
    
      ///在__pos之后插入__n个数据值为__x的结点
      void _M_insert_after_fill(_Node_base* __pos,
                                size_type __n, const value_type& __x) {
        for (size_type __i = 0; __i < __n; ++__i)
          __pos = __slist_make_link(__pos, _M_create_node(__x));
      }
    
    
    
      /// Check whether it's an integral type.  If so, it's not an iterator.
      template <class _InIter>
      void _M_insert_after_range(_Node_base* __pos,
                                 _InIter __first, _InIter __last) {
        typedef typename _Is_integer<_InIter>::_Integral _Integral;
        _M_insert_after_range(__pos, __first, __last, _Integral());
      }
    
      template <class _Integer>
      void _M_insert_after_range(_Node_base* __pos, _Integer __n, _Integer __x,
                                 __true_type) {
        _M_insert_after_fill(__pos, __n, __x);
    }
    
      ///在__pos之后插入[__first,__last)之间的值
      template <class _InIter>
      void _M_insert_after_range(_Node_base* __pos,
                                 _InIter __first, _InIter __last,
                                 __false_type) {
        while (__first != __last) {
          __pos = __slist_make_link(__pos, _M_create_node(*__first));
          ++__first;
        }
    }
    
    public:
    
      iterator insert_after(iterator __pos, const value_type& __x) {
        return iterator(_M_insert_after(__pos._M_node, __x));
      }
    
      iterator insert_after(iterator __pos) {
        return insert_after(__pos, value_type());
      }
    
      void insert_after(iterator __pos, size_type __n, const value_type& __x) {
        _M_insert_after_fill(__pos._M_node, __n, __x);
      }
    
      /// We don't need any dispatching tricks here, because _M_insert_after_range
      /// already does them.
      template <class _InIter>
      void insert_after(iterator __pos, _InIter __first, _InIter __last) {
        _M_insert_after_range(__pos._M_node, __first, __last);
      }
         ///因为slist是单向链表,因此多採用insert_after来实现插入
         ///提供的insert函数也实现找到插入位置的前驱结点,然后调用insert_after来实现的
      iterator insert(iterator __pos, const value_type& __x) {
        return iterator(_M_insert_after(__slist_previous(&this->_M_head,
                                                         __pos._M_node),
                        __x));
      }
    
      iterator insert(iterator __pos) {
        return iterator(_M_insert_after(__slist_previous(&this->_M_head,
                                                         __pos._M_node),
                                        value_type()));
      }
    
      void insert(iterator __pos, size_type __n, const value_type& __x) {
        _M_insert_after_fill(__slist_previous(&this->_M_head, __pos._M_node),
                             __n, __x);
      }
    
      /// We don't need any dispatching tricks here, because _M_insert_after_range
      /// already does them.
      template <class _InIter>
      void insert(iterator __pos, _InIter __first, _InIter __last) {
        _M_insert_after_range(__slist_previous(&this->_M_head, __pos._M_node),
                              __first, __last);
      }
    
    public:
      iterator erase_after(iterator __pos) {
        return iterator((_Node*) this->_M_erase_after(__pos._M_node));
      }
      iterator erase_after(iterator __before_first, iterator __last) {
        return iterator((_Node*) this->_M_erase_after(__before_first._M_node,
                                                      __last._M_node));
      }
    
      ///因为slist是单向链表,因此多採用erase_after来实现删除
     ///提供的erase函数也实现找到删除位置的前驱结点,然后调用erase_after来实现的
      iterator erase(iterator __pos) {
        return (_Node*) this->_M_erase_after(__slist_previous(&this->_M_head,
                                                              __pos._M_node));
      }
      iterator erase(iterator __first, iterator __last) {
        return (_Node*) this->_M_erase_after(
          __slist_previous(&this->_M_head, __first._M_node), __last._M_node);
      }
    
      void resize(size_type new_size, const _Tp& __x);
      void resize(size_type new_size) { resize(new_size, _Tp()); }
      void clear() { this->_M_erase_after(&this->_M_head, 0); }
    
    public:
      /// Moves the range (__before_first, __before_last ] to *this,
      ///  inserting it immediately after __pos.  This is constant time.
      void splice_after(iterator __pos,
                        iterator __before_first, iterator __before_last)
      {
        if (__before_first != __before_last)
          __slist_splice_after(__pos._M_node, __before_first._M_node,
                               __before_last._M_node);
      }
    
      /// Moves the element that follows __prev to *this, inserting it immediately
      ///  after __pos.  This is constant time.
      void splice_after(iterator __pos, iterator __prev)
      {
        __slist_splice_after(__pos._M_node,
                             __prev._M_node, __prev._M_node->_M_next);
      }
    
    
      /// Removes all of the elements from the list __x to *this, inserting
      /// them immediately after __pos.  __x must not be *this.  Complexity:
      /// linear in __x.size().
      void splice_after(iterator __pos, slist& __x)
      {
        __slist_splice_after(__pos._M_node, &__x._M_head);
      }
    
      /// Linear in distance(begin(), __pos), and linear in __x.size().
      void splice(iterator __pos, slist& __x) {
        if (__x._M_head._M_next)
          __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
                               &__x._M_head, __slist_previous(&__x._M_head, 0));
      }
    
      /// Linear in distance(begin(), __pos), and in distance(__x.begin(), __i).
      void splice(iterator __pos, slist& __x, iterator __i) {
        __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
                             __slist_previous(&__x._M_head, __i._M_node),
                             __i._M_node);
      }
    
      /// Linear in distance(begin(), __pos), in distance(__x.begin(), __first),
      /// and in distance(__first, __last).
      void splice(iterator __pos, slist& __x, iterator __first, iterator __last)
      {
        if (__first != __last)
          __slist_splice_after(__slist_previous(&this->_M_head, __pos._M_node),
                               __slist_previous(&__x._M_head, __first._M_node),
                               __slist_previous(__first._M_node, __last._M_node));
      }
    
    public:
      void reverse() {
        if (this->_M_head._M_next)
          this->_M_head._M_next = __slist_reverse(this->_M_head._M_next);
      }
    
      void remove(const _Tp& __val);
      void unique();
      void merge(slist& __x);
      void sort();
    
      template <class _Predicate>
      void remove_if(_Predicate __pred);
    
      template <class _BinaryPredicate>
      void unique(_BinaryPredicate __pred);
    
      template <class _StrictWeakOrdering>
      void merge(slist&, _StrictWeakOrdering);
    
      template <class _StrictWeakOrdering>
      void sort(_StrictWeakOrdering __comp);
    
    };
    
    template <class _Tp, class _Alloc>
    slist<_Tp,_Alloc>& slist<_Tp,_Alloc>::operator=(const slist<_Tp,_Alloc>& __x)
    {
      if (&__x != this) {
    
        _Node_base* __p1 = &this->_M_head;
        _Node* __n1 = (_Node*) this->_M_head._M_next;
        const _Node* __n2 = (const _Node*) __x._M_head._M_next;
    
        while (__n1 && __n2) {
          __n1->_M_data = __n2->_M_data;
          __p1 = __n1;      ///赋值过程中记录前一个节点指针,方便后面的处理
          __n1 = (_Node*) __n1->_M_next;
          __n2 = (const _Node*) __n2->_M_next;
        }
    
        if (__n2 == 0)
          this->_M_erase_after(__p1, 0);
        else
          _M_insert_after_range(__p1, const_iterator((_Node*)__n2),
                                      const_iterator(0));
      }
      return *this;
    }
    
    template <class _Tp, class _Alloc>
    void slist<_Tp, _Alloc>::_M_fill_assign(size_type __n, const _Tp& __val) {
    
      _Node_base* __prev = &this->_M_head;
      _Node* __node = (_Node*) this->_M_head._M_next;
    
      for ( ; __node != 0 && __n > 0 ; --__n) {
        __node->_M_data = __val;
        __prev = __node;
        __node = (_Node*) __node->_M_next;
      }
    
      if (__n > 0)
        _M_insert_after_fill(__prev, __n, __val);
      else
        this->_M_erase_after(__prev, 0);
    }
    
    
    template <class _Tp, class _Alloc> template <class _InputIter>
    void
    slist<_Tp, _Alloc>::_M_assign_dispatch(_InputIter __first, _InputIter __last,
                                           __false_type)
    {
      _Node_base* __prev = &this->_M_head;
      _Node* __node = (_Node*) this->_M_head._M_next;
    
      while (__node != 0 && __first != __last) {
        __node->_M_data = *__first;
        __prev = __node;
        __node = (_Node*) __node->_M_next;
        ++__first;
      }
    
      if (__first != __last)
        _M_insert_after_range(__prev, __first, __last);
      else
        this->_M_erase_after(__prev, 0);
    }
    
    template <class _Tp, class _Alloc>
    inline bool
    operator==(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
    {
      typedef typename slist<_Tp,_Alloc>::const_iterator const_iterator;
      const_iterator __end1 = _SL1.end();
      const_iterator __end2 = _SL2.end();
    
      const_iterator __i1 = _SL1.begin();
      const_iterator __i2 = _SL2.begin();
      while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2) {
        ++__i1;
        ++__i2;
      }
    
      return __i1 == __end1 && __i2 == __end2;
    }
    
    
    template <class _Tp, class _Alloc>
    inline bool
    operator<(const slist<_Tp,_Alloc>& _SL1, const slist<_Tp,_Alloc>& _SL2)
    {
      return lexicographical_compare(_SL1.begin(), _SL1.end(),
                                     _SL2.begin(), _SL2.end());
    }
    
    template <class _Tp, class _Alloc>
    void slist<_Tp,_Alloc>::resize(size_type __len, const _Tp& __x)
    {
      _Node_base* __cur = &this->_M_head;
      while (__cur->_M_next != 0 && __len > 0) {
        --__len;
        __cur = __cur->_M_next;
      }
      if (__cur->_M_next)
        this->_M_erase_after(__cur, 0);
      else
        _M_insert_after_fill(__cur, __len, __x);
    }
    
    template <class _Tp, class _Alloc>
    void slist<_Tp,_Alloc>::remove(const _Tp& __val)
    {
      _Node_base* __cur = &this->_M_head;
      while (__cur && __cur->_M_next) {
    
        if (((_Node*) __cur->_M_next)->_M_data == __val)   ///比較下一个结点的值和val是否相等
          this->_M_erase_after(__cur);
        else
          __cur = __cur->_M_next;
      }
    }
    
    template <class _Tp, class _Alloc>
    void slist<_Tp,_Alloc>::unique()
    {
      _Node_base* __cur = this->_M_head._M_next;
      if (__cur) {
        while (__cur->_M_next) {
    
          if (((_Node*)__cur)->_M_data == ((_Node*)(__cur->_M_next))->_M_data)
            this->_M_erase_after(__cur);
          else
            __cur = __cur->_M_next;
        }
      }
    }
    
    template <class _Tp, class _Alloc>
    void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x)
    {
      _Node_base* __n1 = &this->_M_head;
      while (__n1->_M_next && __x._M_head._M_next) {
    
        if (((_Node*) __x._M_head._M_next)->_M_data <
            ((_Node*)       __n1->_M_next)->_M_data)
    
          __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
        __n1 = __n1->_M_next;
      }
    
      if (__x._M_head._M_next) {
        __n1->_M_next = __x._M_head._M_next;
        __x._M_head._M_next = 0;
      }
    }
    
    ///和list採用同样的算法
    template <class _Tp, class _Alloc>
    void slist<_Tp,_Alloc>::sort()
    {
      if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
        slist __carry;
        slist __counter[64];
        int __fill = 0;
        while (!empty()) {
          __slist_splice_after(&__carry._M_head,
                               &this->_M_head, this->_M_head._M_next);
          int __i = 0;
          while (__i < __fill && !__counter[__i].empty()) {
            __counter[__i].merge(__carry);
            __carry.swap(__counter[__i]);
            ++__i;
          }
          __carry.swap(__counter[__i]);
          if (__i == __fill)
            ++__fill;
        }
    
        for (int __i = 1; __i < __fill; ++__i)
          __counter[__i].merge(__counter[__i-1]);
        this->swap(__counter[__fill-1]);
      }
    }
    
    
    template <class _Tp, class _Alloc>
    template <class _Predicate>
    void slist<_Tp,_Alloc>::remove_if(_Predicate __pred)
    {
      _Node_base* __cur = &this->_M_head;
      while (__cur->_M_next) {
        if (__pred(((_Node*) __cur->_M_next)->_M_data))
          this->_M_erase_after(__cur);
        else
          __cur = __cur->_M_next;
      }
    }
    
    template <class _Tp, class _Alloc> template <class _BinaryPredicate>
    void slist<_Tp,_Alloc>::unique(_BinaryPredicate __pred)
    {
      _Node* __cur = (_Node*) this->_M_head._M_next;
      if (__cur) {
        while (__cur->_M_next) {
          if (__pred(((_Node*)__cur)->_M_data,
                     ((_Node*)(__cur->_M_next))->_M_data))
            this->_M_erase_after(__cur);
          else
            __cur = (_Node*) __cur->_M_next;
        }
      }
    }
    
    template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
    void slist<_Tp,_Alloc>::merge(slist<_Tp,_Alloc>& __x,
                                  _StrictWeakOrdering __comp)
    {
      _Node_base* __n1 = &this->_M_head;
      while (__n1->_M_next && __x._M_head._M_next) {
        if (__comp(((_Node*) __x._M_head._M_next)->_M_data,
                   ((_Node*)       __n1->_M_next)->_M_data))
          __slist_splice_after(__n1, &__x._M_head, __x._M_head._M_next);
        __n1 = __n1->_M_next;
      }
      if (__x._M_head._M_next) {
        __n1->_M_next = __x._M_head._M_next;
        __x._M_head._M_next = 0;
      }
    }
    
    template <class _Tp, class _Alloc> template <class _StrictWeakOrdering>
    void slist<_Tp,_Alloc>::sort(_StrictWeakOrdering __comp)
    {
      if (this->_M_head._M_next && this->_M_head._M_next->_M_next) {
        slist __carry;
        slist __counter[64];
        int __fill = 0;
        while (!empty()) {
          __slist_splice_after(&__carry._M_head,
                               &this->_M_head, this->_M_head._M_next);
          int __i = 0;
          while (__i < __fill && !__counter[__i].empty()) {
            __counter[__i].merge(__carry, __comp);
            __carry.swap(__counter[__i]);
            ++__i;
          }
          __carry.swap(__counter[__i]);
          if (__i == __fill)
            ++__fill;
        }
    
        for (int __i = 1; __i < __fill; ++__i)
          __counter[__i].merge(__counter[__i-1], __comp);
        this->swap(__counter[__fill-1]);
      }
    }
    


  • 相关阅读:
    Tencent 闲聊对话机器人接口调用,画像:设计员小白
    logging模块简介python
    jieba分词的几种形式
    h5py这个坑-PyCharm Process finished with exit code -1073741819 (0xC0000005)
    python之six模块的用法six.py2 six.py3
    Swoole从入门到入土(8)——协程初探
    Swoole从入门到入土(7)——TCP服务器[大杂烩]
    Swoole从入门到入土(6)——TCP服务器[粘包]
    Swoole从入门到入土(5)——TCP服务器[异步任务]
    Swoole从入门到入土(4)——TCP服务器[正确重启]
  • 原文地址:https://www.cnblogs.com/yxwkf/p/5394016.html
Copyright © 2020-2023  润新知