• hdu 6703 array(权值线段树)


    Problem Description

    You are given an array a1,a2,...,an(i[1,n],1ain). Initially, each element of the array is **unique**.

    Moreover, there are m instructions.

    Each instruction is in one of the following two formats:

    1. (1,pos),indicating to change the value of apos to apos+10,000,000;
    2. (2,r,k),indicating to ask the minimum value which is **not equal** to any ai ( 1ir ) and **not less ** than k.

    Please print all results of the instructions in format 2.

    Input

    The first line of the input contains an integer T(1T10), denoting the number of test cases.

    In each test case, there are two integers n(1n100,000),m(1m100,000) in the first line, denoting the size of array a and the number of instructions.

    In the second line, there are n distinct integers a1,a2,...,an (i[1,n],1ain),denoting the array.
    For the following m lines, each line is of format (1,t1) or (2,t2,t3).
    The parameters of each instruction are generated by such way :

    For instructions in format 1 , we defined pos=t1LastAns . (It is promised that 1posn)

    For instructions in format 2 , we defined r=t2LastAns,k=t3LastAns. (It is promised that 1rn,1kn )

    (Note that  means the bitwise XOR operator. )

    Before the first instruction of each test case, LastAns is equal to 0 .After each instruction in format 2LastAns will be changed to the result of that instruction.

    (n510,000,m510,000 )

    Output

    For each instruction in format 2, output the answer in one line.

    思路

    有两种nlogn的解法 、

    其一:用权值线段树维护出现的下标 然后维护一下区间最大值 对于1操作我们可以直接把下标变大 对于操作二我们可以区间查询到底 但是要加上一个判断 就是当前子树的

    最大下标是否大于输入的位置。

    其二:我们可以同样考虑用权值线段树维护当前的最左位置 这样建立可持久化线段树以后我们就可以解决不修改的查询操作 对于操作一 我们可以考虑用一个set维护 那么对于某一查询要么就是

    直接查出来的值要么就是set里面的值 我们选一个最小的即可。

    解法一:

    #include <bits/stdc++.h>
    using namespace std;
    const double pi = acos(-1.0);
    const int N = 1e5+7;
    const int inf = 0x3f3f3f3f;
    const double eps = 1e-6;
    typedef long long ll;
    const ll mod = 1e9+7;
    int a[N],po[N];
    struct tree{
        int l,r,v;
    }t[N<<2];
    void build(int p,int l,int r){
        t[p].l=l; t[p].r=r;
        if(l==r){
            t[p].v=po[l];
            //cout<<t[p].l<<" "<<t[p].r<<" "<<t[p].v<<endl;
            return ;
        }
        int mid=(l+r)>>1;
        build(p<<1,l,mid);
        build(p<<1|1,mid+1,r);
        t[p].v=max(t[p<<1].v,t[p<<1|1].v);
    }
    void update(int p,int x,int v){
        if(t[p].l==t[p].r&&t[p].l==x){
            t[p].v=v;
            po[t[p].l]=v;
            return ;
        }
        int mid=(t[p].l+t[p].r)>>1;
        if(x<=mid) update(p<<1,x,v);
        else update(p<<1|1,x,v);
        t[p].v=max(t[p<<1].v,t[p<<1|1].v);
    }
    int query(int p,int l,int r,int pos){
    //    cout<<t[p].l<<" "<<t[p].r<<endl;
        if(t[p].l==t[p].r){
            return t[p].l;
        }
        int mid=(t[p].l+t[p].r)>>1;
        int res;
        if(t[p<<1].v>pos){
            if(l<=mid) res=query(p<<1,l,r,pos);
            if(po[res]>pos) return res;
            if(r>mid) res=query(p<<1|1,l,r,pos);
        }else{
            if(r>mid) res=query(p<<1|1,l,r,pos);
        }
        return res;
    }
    int main(){
    //    ios::sync_with_stdio(false);
    //    cin.tie(0); cout.tie(0);
        int t; scanf("%d",&t);
        while(t--){
            memset(po,0,sizeof(po));
            int n,m; scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++) scanf("%d",a+i),po[a[i]]=i;
            po[n+1]=n+1;
            a[n+1]=n+1;
            build(1,1,n+1);
            int lastans=0,ans;
            for(int i=1;i<=m;i++){
                int op,r,k;
                scanf("%d%d",&op,&r);
                if(op==1){
                    r=r^lastans;
                    //printf("%d
    ",a[r]);
                    update(1,a[r],n+1);
                }else{
                    scanf("%d",&k);
                    r=r^lastans; k=k^lastans;
                    //cout<<r<<" "<<k<<" "<<lastans<<endl;
                    ans=query(1,k,n+1,r);
                    lastans=ans;
                    printf("%d
    ",ans);
                //    cout<<ans<<"
    ";
                }
            }
        }
    } 
    View Code

    解法二:

    #include <bits/stdc++.h>
    using namespace std;
    const double pi = acos(-1.0);
    const int N = 1e5+7;
    const int inf = 0x3f3f3f3f;
    const double eps = 1e-6;
    typedef long long ll;
    const ll mod = 1e7+9;
    int a[N],rt[N];
    struct tree{
        int l,r,v;
        int ls,rs;
    }t[N<<5];
    set<int> s;
    int nico=0;
    int cnt=0;
    void build(int &p,int l,int r){
        p=++nico;
        t[p].l=l; t[p].r=r;
        if(l==r){
            t[p].v=l;
            return ;
        }
        int mid=(l+r)>>1;
        build(t[p].ls,l,mid);
        build(t[p].rs,mid+1,r);
        t[p].v=min(t[t[p].ls].v,t[t[p].rs].v);
    }
    void update(int &p,int last,int x,int v){
        p=++cnt;
        t[p]=t[last];
        if(t[p].l==t[p].r&&t[p].l==x){
            t[p].v=v;
            return ;
        }
        int mid=(t[p].l+t[p].r)>>1;
        if(x<=mid) update(t[p].ls,t[last].ls,x,v);
        else update(t[p].rs,t[last].rs,x,v);
        t[p].v=min(t[t[p].ls].v,t[t[p].rs].v);
    }
    int query(int p,int l,int r){
        if(l<=t[p].l&&t[p].r<=r){
            return t[p].v;
        }
        int mid=(t[p].l+t[p].r)>>1;
        int ans=inf;
        if(l<=mid) ans=min(ans,query(t[p].ls,l,r));
        if(mid<r) ans=min(ans,query(t[p].rs,l,r));
        return ans;
    }
    int main(){
    //    ios::sync_with_stdio(false);
    //    cin.tie(0); cout.tie(0);
        int t; scanf("%d",&t);
        
        while(t--){
            s.clear();
            int n,m; scanf("%d%d",&n,&m);
            build(rt[0],1,n+1);
            cnt=nico;    
            for(int i=1;i<=n;i++){
                scanf("%d",a+i);
                update(rt[i],rt[i-1],a[i],inf);
            }
            int lastans=0; int nowans;
            for(int i=1;i<=m;i++){
                int op,t1,t2;
                scanf("%d",&op);
                if(op==1){
                    scanf("%d",&t1);
                    t1=t1^lastans;
                    s.insert(a[t1]);
                }else{
                    scanf("%d%d",&t1,&t2);
                    t1=t1^lastans; t2=t2^lastans;
                    auto v=s.lower_bound(t2);
                    if(v!=s.end()){
                        nowans=min(*v,query(rt[t1],t2,n+1));
                    }else{
                        nowans=query(rt[t1],t2,n+1);
                    }
                    lastans=nowans;
                    printf("%d
    ",nowans);
                }
            }
        }
    }
    View Code
  • 相关阅读:
    【codeforces 791D】 Bear and Tree Jumps
    【codeforces 791C】Bear and Different Names
    【codeforces 791B】Bear and Friendship Condition
    【codeforces 791A】Bear and Big Brother
    【t017】YL杯超级篮球赛
    Java Web整合开发(80) -- EJB & WebService
    搜索与排序
    T2821 天使之城 codevs
    T1155 金明的预算方案 codevs
    后缀表达式
  • 原文地址:https://www.cnblogs.com/wmj6/p/11415253.html
Copyright © 2020-2023  润新知