• POJ 1068 -- Parencodings


    Parencodings
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 27602   Accepted: 16226

    Description

    Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways: 
    q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence). 
    q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence). 

    Following is an example of the above encodings: 

    S (((()()())))
    P-sequence 4 5 6666
    W-sequence 1 1 1456

    Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string. 

    Input

    The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.

    Output

    The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.

    Sample Input

    2
    6
    4 5 6 6 6 6
    9 
    4 6 6 6 6 8 9 9 9
    

    Sample Output

    1 1 1 4 5 6
    1 1 2 4 5 1 1 3 9

    Source

     
    题意:

    对于给出的原括号串,存在两种数字密码串:

    1.p序列:当出现匹配括号对时,从该括号对的右括号开始往左数,直到最前面的左括号数,就是pi的值。

    2.w序列:当出现匹配括号对时,包含在该括号对中的所有右括号数(包括该括号对),就是wi的值。

    题目的要求:对给出的p数字串,求出对应的w序列

    解题思路:

    模拟题

    给的p序列长度n(1 <= n <= 20)即为右括号的个数。

    在处理括号序列时可以使用一个小技巧,把括号序列转化为01序列,左0右1,处理时比较方便而01序列的长度也不会超过40。

     1 #include<iostream>
     2 using namespace std;
     3 int p[21];
     4 int s[41];
     5 int w[21];
     6 int main()
     7 {
     8     int n;
     9     cin>>n;
    10     while(n--)
    11     {
    12         int len;
    13         cin>>len;
    14         for(int i=0;i<len;i++)
    15         {
    16             cin>>p[i];
    17         }
    18         int sj=0;
    19         int leftCount = 0;
    20         for(int i=0;i<len;i++)
    21         {
    22             for(int j=0;j<(p[i] - leftCount);j++)
    23             {
    24                 s[sj] = 0;
    25                 sj++;
    26             }
    27             leftCount = p[i];
    28             s[sj] = 1;
    29             sj++;
    30         }
    31         /*
    32         //测试s序列代码
    33         for(int i=0;i<len*2;i++)
    34             cout<<s[i];
    35         cout<<endl;
    36         */
    37         int rightCount = 0;
    38         while(rightCount<len)
    39         {
    40             int temp = 0;
    41             for(int i=0;i<len *2;i++)
    42             {
    43                 if(s[i] == 1) temp++;
    44                 if(temp>rightCount)
    45                 {///找到当前没有输出的第一个右括号,位置为i
    46                     int right = 0;int left = 0;
    47                     for(int j=i;j>=0;j--)
    48                     {//从第i个位置向前遍历,右括号计数为right,左括号计数为left
    49                         //当left == right 时,停止遍历,找到了当前右括号的左括号,进行输出
    50                         if(s[j] == 1) right++;
    51                         else{
    52                             left++;
    53                             if(left == right)
    54                             {
    55                                 cout<<left;
    56                                 if(temp != len) cout<<" ";
    57                                 else cout<<endl;
    58                                 break;
    59                             }
    60                         }
    61                     }
    62                     //更新当前找到的右括号的个数
    63                     rightCount = temp;
    64                 }
    65             }
    66         }
    67     }
    68     return 0;
    69 }

  • 相关阅读:
    git的最常用命令总结
    java 多线程 sleep 和wait
    java 多线程 线程的状态和操作系统中进程状态的对应关系
    IDEA的最常见快捷键
    设计模式 单例模式的几种实现方式
    spring boot 项目部署到服务器上出现的问题
    算法与数据结构 (八) HashMap源码
    算法与数据结构 (七) 查找 数组的优化方向: 二分查找和哈希查找,
    算法与数据结构 (六) 排序 三 非比较类的排序 基数排序
    Native Crash定位方法
  • 原文地址:https://www.cnblogs.com/yxh-amysear/p/8419253.html
Copyright © 2020-2023  润新知