1、主类
package com.example.demo.flink; import com.example.demo.flink.impl.CountAverageWithValueState; import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.configuration.Configuration; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; /** * @program: demo * @description: valuestate * @author: yang * @create: 2020-12-28 15:46 */ public class TestKeyedValueStateMain { public static void main(String[] args) throws Exception{ //获取执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration()); //StreamExecutionEnvironment.getExecutionEnvironment(); //设置并行度 env.setParallelism(16); //获取数据源 DataStreamSource<Tuple2<Long, Long>> dataStreamSource = env.fromElements( Tuple2.of(1L, 3L), Tuple2.of(1L, 7L), Tuple2.of(2L, 4L), Tuple2.of(1L, 5L), Tuple2.of(2L, 2L), Tuple2.of(2L, 6L)); // 输出: //(1,5.0) //(2,4.0) dataStreamSource .keyBy(0) .flatMap(new CountAverageWithValueState()) .print(); env.execute("TestStatefulApi"); } }
2、处理实现类
package com.example.demo.flink.impl; /** * @program: demo * @description: valuestate * @author: yang * @create: 2020-12-28 16:26 */ import org.apache.flink.api.common.functions.RichFlatMapFunction; import org.apache.flink.api.common.state.ValueState; import org.apache.flink.api.common.state.ValueStateDescriptor; import org.apache.flink.api.common.typeinfo.Types; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.configuration.Configuration; import org.apache.flink.util.Collector; /** * ValueState<T> :这个状态为每一个 key 保存一个值 * value() 获取状态值 * update() 更新状态值 * clear() 清除状态 * * IN,输入的数据类型 * OUT:数据出的数据类型 */ public class CountAverageWithValueState extends RichFlatMapFunction<Tuple2<Long, Long>, Tuple2<Long, Double>> { private ValueState<Tuple2<Long,Long>> countAndSum; /**注册状态,并初始化*/ @Override public void open(Configuration parameters) throws Exception { ValueStateDescriptor descriptor = new ValueStateDescriptor<Tuple2<Long, Long>>("valueDescriptor",Types.TUPLE(Types.LONG,Types.LONG)); countAndSum = getRuntimeContext().getState(descriptor); } @Override public void flatMap(Tuple2<Long, Long> element, Collector<Tuple2<Long, Double>> collector) throws Exception { //拿取当前key的状态值 Tuple2<Long, Long> currentState = countAndSum.value(); //如果是空,则初始化 if(currentState == null){ currentState = Tuple2.of(0L,0L); } //不为空,则计算,f0为key出现的次数 , f1为key对应的value叠加值 currentState.f0 +=1; currentState.f1 += element.f1; countAndSum.update(currentState); if(currentState.f0 >=3){ double avg = (double)currentState.f1 / currentState.f0; collector.collect(Tuple2.of(element.f0,avg)); countAndSum.clear(); } } }