• MapReduce编程实战之“高级特性”



    本篇介绍MapReduce的一些高级特性,如计数器、数据集的排序和连接。计数器是一种收集作业统计信息的有效手段。排序是MapReduce的核心技术,MapReduce也可以运行大型数据集间的“”连接(join)操作。


    计数器


    计数器是一种收集作业统计信息的有效手段,用于质量控制或应用级统计。计数器还可用于辅助诊断系统故障。对于大型分布式系统来说,获取计数器比分析日志文件easy的多。


    演示样例一:气温缺失及不规则数据计数器


    import java.io.IOException;
    import java.util.Iterator;
    
    import org.apache.hadoop.conf.Configured;
    import org.apache.hadoop.io.*;
    import org.apache.hadoop.mapred.JobClient;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.mapred.MapReduceBase;
    import org.apache.hadoop.mapred.Mapper;
    import org.apache.hadoop.mapred.OutputCollector;
    import org.apache.hadoop.mapred.Reducer;
    import org.apache.hadoop.mapred.Reporter;
    import org.apache.hadoop.util.Tool;
    import org.apache.hadoop.util.ToolRunner;
    
    //统计最高气温的作业。也统计气温值缺少的记录,不规范的记录
    public class MaxTemperatureWithCounters extends Configured implements Tool {
    
    	enum Temperature {
    		MiSSING, MALFORMED
    	}
    
    	static class MaxTemeratureMapperWithCounters extends MapReduceBase implements
    			Mapper<LongWritable, Text, Text, IntWritable> {
    
    		private NcdcRecordParser parser = new NcdcRecordParser();
    
    		@Override
    		public void map(LongWritable key, Text value,
    				OutputCollector<Text, IntWritable> output, Reporter reporter)
    				throws IOException {
    			parser.parse(value);
    			if (parser.isValidTemperature()) {
    				int airTemperature = parser.getAirTemperature();
    				output.collect(new Text(parser.getYear()), new IntWritable(
    						airTemperature));
    			} else if (parser.isMa1formedTemperature()) {
    				reporter.incrCounter(Temperature.MALFORMED, 1);
    			} else if (parser.IsMissingTemperature()) {
    				reporter.incrCounter(Temperature.MALFORMED, 1);
    			}
    
    		}
    
    	}
    
    	static class MaxTemperatureReduceWithCounters extends MapReduceBase implements
    			Reducer<Text, IntWritable, Text, IntWritable> {
    		public void reduce(Text key, Iterator<IntWritable> values,
    				OutputCollector<Text, IntWritable> output, Reporter reporter)
    				throws IOException {
    			int maxValue = Integer.MIN_VALUE;
    			while (values.hasNext()) {
    				maxValue = Math.max(maxValue, values.next().get());
    			}
    			output.collect(key, new IntWritable(maxValue));
    
    		}
    	}
    
    	@Override
    	public int run(String[] args) throws Exception {
    		args = new String[] { "/test/input/t", "/test/output/t" }; // 给定输入输出路径
    		JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
    		if (conf == null) {
    			return -1;
    		}
    		conf.setOutputKeyClass(Text.class);
    		conf.setOutputValueClass(IntWritable.class);
    		conf.setMapperClass(MaxTemeratureMapperWithCounters.class);
    		conf.setCombinerClass(MaxTemperatureReduceWithCounters.class);
    		conf.setReducerClass(MaxTemperatureReduceWithCounters.class);
    		JobClient.runJob(conf);
    		return 0;
    	}
    
    	public static void main(String[] args) throws Exception {
    		int exitCode = ToolRunner.run(new MaxTemperatureWithCounters(), args);
    		System.exit(exitCode);
    	}
    }
    

    演示样例二:统计气温信息缺失记录所占比例


    import org.apache.hadoop.conf.*;
    import org.apache.hadoop.mapred.*;
    import org.apache.hadoop.util.*;
    //统计气温缺失记录所占比例
    
    public class MissingTemperatureFields extends Configured implements Tool {
    
    	@Override
    	public int run(String[] args) throws Exception {
    		String jobID = args[0];
    		JobClient jobClient = new JobClient(new JobConf(getConf()));
    		RunningJob job = jobClient.getJob(JobID.forName(jobID));
    		if (job == null) {
    			System.err.printf("No job with ID %s found.
    ", jobID);
    			return -1;
    		}
    		if (!job.isComplete()) {
    			System.err.printf("Job %s is not complete.
    ", jobID);
    			return -1;
    		}
    		Counters counters = job.getCounters();
    		long missing = counters
    				.getCounter(MaxTemperatureWithCounters.Temperature.MiSSING);
    		long total = counters.findCounter(
    				"org.apache.hadoop.mapred.Task$Counter", "MAP_INPUT_RECORDS")
    				.getCounter();
    		System.out.printf("Records with missing temperature fields:%.2f%%
    ",
    				100.0 * missing / total);
    		return 0;
    	}
    
    	public static void main(String[] args) throws Exception {
    		int exitCode = ToolRunner.run(new MissingTemperatureFields(), args);
    		System.exit(exitCode);
    	}
    }
    

    hadoop jar xx.jar MissingTemperatureFields job_1400072670556_0001


    排序


    排序是MapReduce的核心技术。

    虽然应用本身可能并不须要对数据排序,但仍可能使用MapReduce的排序功能来组织数据。以下将讨论几种不同的数据集排序方法。以及怎样控制MapReduce的排序。


    实例一、数据准备:将天气数据转成顺序文件格式


    import java.io.IOException;
    
    import org.apache.hadoop.conf.*;
    import org.apache.hadoop.io.*;
    import org.apache.hadoop.io.SequenceFile.CompressionType;
    import org.apache.hadoop.io.compress.GzipCodec;
    import org.apache.hadoop.mapred.*;
    import org.apache.hadoop.util.*;
    
    public class SortDataPreprocessor extends Configured implements Tool {
    	static class CleanerMapper extends MapReduceBase implements
    			Mapper<LongWritable, Text, IntWritable, Text> {
    
    		private NcdcRecordParser parser = new NcdcRecordParser();
    
    		@Override
    		public void map(LongWritable key, Text value,
    				OutputCollector<IntWritable, Text> output, Reporter reporter)
    				throws IOException {
    			parser.parse(value);
    			if (parser.isValidTemperature()) {
    				output.collect(new IntWritable(parser.getAirTemperature()),
    						value);
    			}
    		}
    	}
    
    	@Override
    	public int run(String[] args) throws Exception {
    		args = new String[] { "/test/input/t", "/test/input/seq" };
    		JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
    		if (conf == null) {
    			return -1;
    		}
    		conf.setMapperClass(CleanerMapper.class);
    		conf.setOutputKeyClass(IntWritable.class);
    		conf.setOutputValueClass(Text.class);
    		conf.setNumReduceTasks(0);
    		conf.setOutputFormat(SequenceFileOutputFormat.class);
    		SequenceFileOutputFormat.setCompressOutput(conf, true);
    		SequenceFileOutputFormat
    				.setOutputCompressorClass(conf, GzipCodec.class);
    		SequenceFileOutputFormat.setOutputCompressionType(conf,
    				CompressionType.BLOCK);
    		JobClient.runJob(conf);
    		return 0;
    	}
    
    	public static void main(String[] args) throws Exception {
    		int exitCode = ToolRunner.run(new SortDataPreprocessor(), args);
    		System.exit(exitCode);
    	}
    }
    

    演示样例二、部分排序


    import org.apache.hadoop.conf.*;
    import org.apache.hadoop.io.*;
    import org.apache.hadoop.io.SequenceFile.CompressionType;
    import org.apache.hadoop.io.compress.GzipCodec;
    import org.apache.hadoop.mapred.*;
    import org.apache.hadoop.util.*;
    
    public class SortByTemperatureUsingHashPartitioner extends Configured implements
    		Tool {
    
    	@Override
    	public int run(String[] args) throws Exception {
    		args = new String[] { "/test/input/seq", "/test/output/t" };
    		JobConf conf = JobBuilder.parseInputAndOutput(this, getConf(), args);
    		if (conf == null) {
    			return -1;
    		}
    		conf.setInputFormat(SequenceFileInputFormat.class);
    		conf.setOutputKeyClass(IntWritable.class);
    		conf.setOutputFormat(SequenceFileOutputFormat.class);
    		conf.setNumReduceTasks(5);//设置5个reduce任务。输出5个文件
    		SequenceFileOutputFormat.setCompressOutput(conf, true);
    		SequenceFileOutputFormat
    				.setOutputCompressorClass(conf, GzipCodec.class);
    		SequenceFileOutputFormat.setOutputCompressionType(conf,
    				CompressionType.BLOCK);
    		JobClient.runJob(conf);
    		return 0;
    	}
    
    	public static void main(String[] args) throws Exception {
    		int exitCode = ToolRunner.run(
    				new SortByTemperatureUsingHashPartitioner(), args);
    		System.exit(exitCode);
    	}
    
    }
    

    hadoop jar test.jar SortByTemperatureUsingHashPartitioner -D mapred.reduce.tasks=30

    产生多个已经排好序的小文件。


    连接


    MapReduce可以运行大型数据集间的“”连接(join)操作,可是从头编写相关代码来运行连接比較麻烦。

    也可以考虑使用一个更高级的框架,如Pig、Hive或Casading等。它们都将连接操作视为整个实现的核心部分。


    本章的代码用到的基础工具类


    其它章节也可能用到:)


    JobBuilder


    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.mapred.FileInputFormat;
    import org.apache.hadoop.mapred.FileOutputFormat;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.util.Tool;
    
    public class JobBuilder {
    
    	public static JobConf parseInputAndOutput(Tool tool, Configuration conf,
    			String[] args) {
    		if (args.length != 2) {
    			printUsage(tool, "<input><output>");
    			return null;
    		}
    		JobConf jobConf = new JobConf(conf, tool.getClass());
    		FileInputFormat.addInputPath(jobConf, new Path(args[0]));
    		FileOutputFormat.setOutputPath(jobConf, new Path(args[1]));
    		return jobConf;
    	}
    
    	public static void printUsage(Tool tool, String extraArgsUsage) {
    		System.err.printf("Usage:%s [genericOptions] %s
    
    ", tool.getClass()
    				.getSimpleName(), extraArgsUsage);
    	}
    }
    

    NcdcRecordParser

    import org.apache.hadoop.io.Text;
    
    public class NcdcRecordParser {
    	private static final int MISSING_TEMPERATURE = 9999;
    
    	private String year;
    	private int airTemperature;
    	private String quality;
    
    	public void parse(String record) {
    		year = record.substring(15, 19);
    		String airTemperatureString;
    		// Remove leading plus sign as parseInt doesn't like them
    		if (record.charAt(87) == '+') {
    			airTemperatureString = record.substring(88, 92);
    		} else {
    			airTemperatureString = record.substring(87, 92);
    		}
    		airTemperature = Integer.parseInt(airTemperatureString);
    		quality = record.substring(92, 93);
    	}
    
    	public void parse(Text record) {
    		parse(record.toString());
    	}
    
    	public boolean isValidTemperature() {
    		return airTemperature != MISSING_TEMPERATURE
    				&& quality.matches("[01459]");
    	}
    
    	public boolean isMa1formedTemperature() {
    		return !quality.matches("[01459]");
    	}
    
    	public boolean IsMissingTemperature() {
    		return airTemperature == MISSING_TEMPERATURE;
    	}
    
    	public String getYear() {
    		return year;
    	}
    
    	public int getAirTemperature() {
    		return airTemperature;
    	}
    }
    

    这一篇是《Hadoop权威指南》第八章的学习笔记,好久没看Hadoop,工作中也没使用,前不久学习的东西。忘记了非常多。学以致用是非常重要的。没用应用的学习,终于会忘记大部分,感兴趣的就须要多多温习了。

  • 相关阅读:
    Hibernate导致的内存溢出问题
    【转】class file has wrong version 50.0, should be 49.0错误
    修改SQL Server登陆认证方式
    [转]ExtJs中的Store
    70+优秀的前端工具
    书签
    十款好用的在线 CSS3 代码生成工具
    Web Uploader
    sass 在线编译工具之初学
    Web 开发中很有用的8款在线工具
  • 原文地址:https://www.cnblogs.com/yutingliuyl/p/7120540.html
Copyright © 2020-2023  润新知