• POJ2195 Going Home【KM最小匹配】


    题目链接:http://poj.org/problem?id=2195

    Going Home
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions:27287   Accepted: 13601

    Description

    On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man. 

    Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point. 

    You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

    Input

    There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

    Output

    For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.
     
     题意:在图上有相同数量的人和房子,人走一步的代价为1,求每个人都进入房子后代价和最小为多少。
     思路:
     1.利用KM算法求最小匹配,将人作为二分图的x部的点,房子作为y部的点,边权为走一步的代价*哈曼顿距离。需要注意的是,KM算法是求最大匹配的,求最小匹配需要将边权取负值,初始化lx[]数组时需要取 -inf最后返回答案也要返回相反值
     2.用最小费用最大流的做法在这里 https://www.cnblogs.com/yuanweidao/p/11254863.html
     代码如下:
      1 #include<stdio.h>
      2 #include<string.h>
      3 #include<math.h>
      4 #include<algorithm>
      5 #define mem(a, b) memset(a, b, sizeof(a))
      6 const int inf = 0x3f3f3f3f;
      7 using namespace std;
      8 
      9 int n, m;
     10 char map[110][110];
     11 int lx[110], ly[110], match[110], visx[110], visy[110], weight[110][110], slack[110];
     12 
     13 struct Node
     14 {
     15     int x, y;
     16 }xx[110], yy[110];
     17 int cnt1, cnt2;
     18 
     19 int find(int x)
     20 {
     21     visx[x] = 1;
     22     for(int j = 1; j <= cnt2; j ++)
     23     {
     24         if(!visy[j])
     25         {
     26             int t = lx[x] + ly[j] - weight[x][j];
     27             if(t == 0)
     28             {
     29                 visy[j] = 1;
     30                 if(match[j] == -1 || find(match[j]))
     31                 {
     32                     match[j] = x;
     33                     return 1;
     34                 }
     35             }
     36             else if(slack[j] > t)
     37                 slack[j] = t;
     38         }
     39     }
     40     return 0;
     41 }
     42 
     43 int KM()
     44 {
     45     mem(lx, -inf);  //最小权 lx初始化为 -inf 
     46     mem(ly, 0), mem(match, -1);
     47     for(int i = 1; i <= cnt1; i ++)
     48         for(int j = 1; j <= cnt2; j ++)
     49             lx[i] = max(lx[i], weight[i][j]);
     50     for(int i = 1; i <= cnt1; i ++)
     51     {
     52         for(int j = 1; j <= cnt2; j ++)
     53             slack[j] = inf;
     54         while(1)
     55         {
     56             mem(visx, 0), mem(visy, 0);
     57             if(find(i))
     58                 break;
     59             int d = inf;
     60             for(int j = 1; j <= cnt2; j ++)
     61                 if(!visy[j] && d > slack[j])
     62                     d = slack[j];
     63             for(int j = 1; j <= cnt2; j ++)
     64             {
     65                 if(!visy[j])
     66                     slack[j] -= d;
     67                 else
     68                     ly[j] += d;
     69             }
     70             for(int j = 1; j <= cnt1; j ++)
     71                 if(visx[j])
     72                     lx[j] -= d;
     73         }
     74     }
     75     int ans = 0;
     76     for(int j = 1; j <= cnt2; j ++)
     77         if(match[j] != -1)
     78             ans += weight[match[j]][j];
     79     return -ans;//返回负值 
     80 }
     81 
     82 int main()
     83 {
     84     while(scanf("%d%d", &n, &m) != EOF)
     85     {
     86         if(n == 0 && m == 0)
     87             break;
     88         getchar();
     89         cnt1 = 0, cnt2 = 0;
     90         for(int i = 1; i <= n; i ++)
     91             scanf("%s", map[i] + 1);
     92         for(int i = 1; i <= n; i ++)
     93             for(int j = 1; j <= m; j ++)
     94             {
     95                 if(map[i][j] == 'm')//存人的点 
     96                     xx[++ cnt1].x = i, xx[cnt1].y = j;
     97                 else if(map[i][j] == 'H')//存房子的点 
     98                     yy[++ cnt2].x = i, yy[cnt2].y = j;
     99             }
    100         for(int i = 1; i <= cnt1; i ++) //KM求最小匹配 边权赋为 负值 
    101             for(int j = 1; j <= cnt2; j ++)
    102                 weight[i][j] = -(abs(xx[i].x - yy[j].x) + abs(xx[i].y - yy[j].y));
    103         int ans = KM();
    104         printf("%d
    ", ans);
    105     }
    106     return 0;
    107 }
    KM算法求最小匹配
     
     
  • 相关阅读:
    java的replace和replaceAll
    hibernate必须的包下载以及各个包的作用
    Jquery退出循环
    JQuery解析XML数据的几个例子
    使用ajax获取servelt数据乱码
    jquery绝对路径
    LeetCode 368. Largest Divisible Subset
    LeetCode 413. Arithmetic Slices
    LeetCode 474. Ones and Zeroes
    LeetCode 486. Predict the Winner
  • 原文地址:https://www.cnblogs.com/yuanweidao/p/11282994.html
Copyright © 2020-2023  润新知