题意
给定长度为 ( m |S|) 的 ( m 01) 串并将其倍长 (k) 次得到一个 ( m|S| imes k) 位的二进制数 (R) ,求有多少种在 ([0,R-1]) 中选择
(m) 个互不相同的数字使得其异或和为 (0) 的方案。
( m |S|leq 50 ,k leq 10^5 ,mleq 7) .
分析
假设选定的 (m) 个数字满足 (A_0 < A_1 < cdots < A_{m-1}).
定义状态 (f_S) ,每一个二进制位表示 (A_i) 是否大于 (A_{i+1}) ,最后一位表示 (A_{m-1}) 是否小于上界(类似数位dp)。
对于原串每一位构造矩阵,对于循环转移相同,快速幂即可。
总时间复杂度为 (O(2^{3n}*(log k+|S|))).
代码
#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int mod=1e9 + 7;
int m,K,maxn;
char str[130];
int cnt[130];
void add(LL &a,LL b){ a+=b;if(a>=mod) a-=mod; }
struct mt{
LL v[130][130];
mt(){memset(v,0,sizeof v);}
void init(){memset(v,0,sizeof v);}
mt operator *(const mt &rhs)const{
mt res;
rep(i,0,maxn)rep(j,0,maxn)rep(k,0,maxn)
add(res.v[i][j],v[i][k]*rhs.v[k][j]%mod);
return res;
}
}B,tmp;
mt Pow(mt a,int b){
mt res;
rep(i,0,maxn) res.v[i][i]=1;
for(;b;b>>=1,a=a*a) if(b&1) res=res*a;
return res;
}
int main(){
m=gi(),K=gi();maxn=(1<<m)-1;
scanf("%s",str);
int l=strlen(str);
for(int i=0;i<130;++i) cnt[i]=cnt[i>>1]+(i&1);
rep(i,0,maxn) B.v[i][i]=1;
for(int i=0;i<l;++i){
tmp.init();
rep(a,0,maxn)
rep(b,0,maxn)if(!(cnt[b]&1)){
int S=0;
for(int j=0;j<m;++j){
if(a>>j&1) { S|=(1<<j); continue;}
int x=(b>>j&1),y=j==m-1?str[i]-'0':(b>>j+1)&1;//
if(x>y) goto A;
S|=(x<y)<<j;
}
tmp.v[a][S]++;
A:;
}
B=B*tmp;
}
B=Pow(B,K);
printf("%lld
",B.v[0][maxn]);
return 0;
}