题意;给出N,A,B;求A*x+ B*y = N+1 的大于0 的解的数量;
思路:先用exgcd求出大于0的初始解x,rest = N - x*A; sum = rest/LCM(A, B);
#include <iostream> #include <algorithm> #include <stdlib.h> #include <time.h> #include <cmath> #include <cstdio> #include <string> #include <cstring> #include <vector> #include <queue> #include <stack> #include <set> #define c_false ios_base::sync_with_stdio(false); cin.tie(0) #define INF 0x3f3f3f3f #define INFL 0x3f3f3f3f3f3f3f3f #define zero_(x,y) memset(x , y , sizeof(x)) #define zero(x) memset(x , 0 , sizeof(x)) #define MAX(x) memset(x , 0x3f ,sizeof(x)) #define swa(x,y) {LL s;s=x;x=y;y=s;} using namespace std ; #define N 100005 const double PI = acos(-1.0); typedef long long LL ; LL x, y, A, B, n, C; LL gcd(LL a, LL b){if(a== 0) return b;else return gcd(b%a,a);} LL exgcd(LL a, LL b, LL &x, LL &y){ if(b == 0){ x = 1; y = 0;return a; }else{ LL t = exgcd(b, a%b, y, x); y -= (a/b)*x; return t; } } LL cal(){ LL sum= 0; LL r = exgcd(A, B, x, y); LL z = A*B/r; if((1+n)%r) return 0; else{ x = x*((1+n)/r); LL d = B/r; x = (x%d + d) %d; if(x == 0) x += d; LL remain = n - x*A; if(remain < 0) return 0; else{ sum++; sum += remain/z; } } return sum; } int main(){ //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); scanf("%I64d",&C); for(int i = 0;i< C;i++){ scanf("%I64d%I64d%I64d",&n, &A, &B); cout<<cal()<<endl; } return 0; }