• 并查集基础


     内容摘自维基百科

    在计算机科学中,并查集是一种树型的数据结构,其保持着用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。有一个联合-查找算法union-find algorithm)定义了两个操作用于此数据结构:

    • Find:确定元素属于哪一个子集。它可以被用来确定两个元素是否属于同一子集。
    • Union:将两个子集合并成同一个集合。

    并查集的两种优化方法:路径压缩与按秩合并:

    第一种方法,称为“按秩合并”,即总是将更小的树连接至更大的树上。因为影响运行时间的是树的深度,更小的树添加到更深的树的根上将不会增加秩除非它们的秩相同。在这个算法中,术语“秩”替代了“深度”,因为同时应用了路径压缩时(见下文)秩将不会与高度相同。单元素的树的秩定义为0,当两棵秩同为r的树联合时,它们的秩r+1。只使用这个方法将使最坏的运行时间提高至每个MakeSet、Union或Find操作O(log n)

    第二个优化,称为“路径压缩”,是一种在执行“查找”时扁平化树结构的方法。关键在于在路径上的每个节点都可以直接连接到根上;他们都有同样的表示方法。为了达到这样的效果,Find递归地经过树,改变每一个节点的引用到根节点。得到的树将更加扁平,为以后直接或者间接引用节点的操作加速。

    int root[N],Rank[N];
    void Init(){
        for(int i = 0; i < N; i++){
            root[i] = i;
            Rank[i] = 1;
        }
    }
    int Find(int v){       ///带路径压缩的递归找根节点
        if(root[v] != v)
            root[v] = Find(root[v]);
        return root[v];
    }
    void Union(int x, int y){   /// 普通合并操作
        int fx = Find(x);
        int fy = Find(y);
        if(fx != fy)
            root[fx] = fy;
    }
    
    void Weight_Union(int x, int y){///按秩合并,元素少的集合根节点指向元素多的集合的根节点;
        x = Find(x);
        y = Find(y);
        if(x == y) return ;
        if(Rank[x] >= Rank[y]){
            root[y] = x;
            Rank[x] += Rank[y];
        }else{
            root[x] = y;
            Rank[y] += Rank[x];
        }
        //cout<<x<<"	"<<y<<"	"<<Rank[x]<<"	"<<Rank[y]<<endl;
    }

     练习题目:

    poj 1611:水题,敲完模板就能过;

     poj 2524:水题。

  • 相关阅读:
    造出最好的 CMS 轮子
    搭建开发框架Express,实现Web网站登录验证
    QueryOver<T>
    NVelocity
    .NET 相依性注入
    Unity 3.5
    java socket 的参数选项解读(转)
    换种方式去分页(转)
    上海市居住证办理材料及流程
    java动态代理
  • 原文地址:https://www.cnblogs.com/yoyo-sincerely/p/5191433.html
Copyright © 2020-2023  润新知