To the Max
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 44765 | Accepted: 23700 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The
input consists of an N * N array of integers. The input begins with a
single positive integer N on a line by itself, indicating the size of
the square two-dimensional array. This is followed by N^2 integers
separated by whitespace (spaces and newlines). These are the N^2
integers of the array, presented in row-major order. That is, all
numbers in the first row, left to right, then all numbers in the second
row, left to right, etc. N may be as large as 100. The numbers in the
array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
Source
思路:将其化简成子段求和问题:将第i行到第j行的数累加成一维数列,在用子段求和求解。
1 #include <iostream> 2 #include <algorithm> 3 #include <cmath> 4 #include <cstdio> 5 #include <string> 6 #include <cstring> 7 #include <vector> 8 #include <queue> 9 #include <stack> 10 #include <set> 11 #define INF 0x3f3f3f3f 12 #define INFL 0x3f3f3f3f3f3f3f3f 13 #define zero_(x,y) memset(x , y , sizeof(x)) 14 #define zero(x) memset(x , 0 , sizeof(x)) 15 #define MAX(x) memset(x , 0x3f ,sizeof(x)) 16 using namespace std ; 17 #define N 505 18 typedef long long LL ; 19 LL dp[N],a[N][N],s[N][N]; 20 int main(){ 21 //freopen("in.txt","r",stdin); 22 int n; 23 scanf("%d",&n); 24 zero(dp);zero(a);zero(s); 25 for(int i=1;i<=n;i++){ 26 for(int j=1;j<=n;j++){ 27 scanf("%I64d",&a[i][j]); 28 } 29 } 30 for(int i=1;i<=n;i++){ 31 for(int j=1;j<=n;j++){ 32 s[j][i]=s[j-1][i]+a[j][i]; 33 34 } 35 } 36 37 LL sum=0,b=0; 38 for(int i=0;i<=n;i++){ 39 for(int j=i+1;j<=n;j++){ 40 b=0; 41 for(int k=1;k<=n;k++){ 42 43 if(b>0) 44 b+=(s[j][k]-s[i][k]); 45 else 46 b=s[j][k]-s[i][k]; 47 if(b>sum) 48 sum=b; 49 50 } 52 } 53 } 54 printf("%I64d ",sum); 55 return 0; 56 }