题目
For their physical fitness program, (N (2 ≤ N ≤ 1,000,000)) cows have decided to run a relay race using the (T (2 ≤ T ≤ 100)) cow trails throughout the pasture.
Each trail connects two different intersections ((1 ≤ I1_i ≤ 1,000; 1 ≤ I2_i ≤ 1,000)), each of which is the termination for at least two trails. The cows know the lengthi of each trail ((1 ≤ lengthi ≤ 1,000)), the two intersections the trail connects, and they know that no two intersections are directly connected by two different trails. The trails form a structure known mathematically as a graph.
To run the relay, the N cows position themselves at various intersections (some intersections might have more than one cow). They must position themselves properly so that they can hand off the baton cow-by-cow and end up at the proper finishing place.
Write a program to help position the cows. Find the shortest path that connects the starting intersection (S) and the ending intersection (E) and traverses exactly N cow trails.
给出一张无向连通图,求S到E经过k条边的最短路。
输入格式
-
Line (1): Four space-separated integers: N, T, S, and E
-
一行四个正整数 (N,T,S,E) ,意义如题面所示。
-
Lines (2..T+1): Line (i+1) describes trail i with three space-separated integers: (length_i) , (I1_i) , and (I2_i)
-
接下来 (T) 行每行三个正整数 (w,u,v),分别表示路径的长度,起点和终点。
输出格式
-
Line 1: A single integer that is the shortest distance from intersection S to intersection E that traverses exactly N cow trails.
-
一行一个整数表示图中从 (S) 到 (E) 经过 $N 条边的最短路长度。
输入样例
2 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
输出样例
10
题解
矩阵我不熟,看了大佬的一个式子:
把经过(x)个点的最短路的邻接矩阵(X)和经过(y)个点的最短路的邻接矩阵(Y)合并的式子为:
(A_{i,j}=min(A_{i,j},X_{i,k}+Y_{k,j}))
把输入转成邻接矩阵后,这个邻接矩阵可以看作恰好经过一个点的最短路,然后转移(n-1)次就可以了
矩阵相乘时,需要使用快速幂优化
代码
#include <cstdio>
#include <cstring>
#define min(a, b) (a < b ? a : b)
int num[1000005], n, s, t, e, tol, x, y, z;
struct map {
int data[500][500];
map operator*(const map &other) const {
map c;
for (int k = 1; k <= tol; k++)
for (int i = 1; i <= tol; i++)
for (int j = 1; j <= tol; j++)
c.data[i][j] =
min(c.data[i][j], data[i][k] + other.data[k][j]);
return c;
}
map() { memset(data, 0x3f3f3f3f, sizeof(data)); }
} dis, ans;
inline int input() { int t; scanf("%d", &t); return t; }
int main() {
n = input() - 1, t = input(), s = input(), e = input();
for (int i = 1; i <= t; i++) {
x=input();
if(!num[y=input()])num[y] = ++tol;
if(!num[z=input()])num[z] = ++tol;
dis.data[num[y]][num[z]] = dis.data[num[z]][num[y]] = x;
}
ans = dis;
while (n) (n & 1) && (ans = ans * dis, 0), dis = dis * dis, n >>= 1;
printf("%d",ans.data[num[s]][num[e]]);
}