题目
This is yet another problem on regular bracket sequences.
A bracket sequence is called regular, if by inserting "+" and "1" into it we get a correct mathematical expression. For example, sequences "(())()", "()" and "(()(()))" are regular, while ")(", "(()" and "(()))(" are not. You have a pattern of a bracket sequence that consists of characters "(", ")" and "?". You have to replace each character "?" with a bracket so, that you get a regular bracket sequence.
For each character "?" the cost of its replacement with "(" and ")" is given. Among all the possible variants your should choose the cheapest.
给一个序列,序列里面会有左括号、问号、右括号。对于一个?而言,可以将其替换为一个(,也可以替换成一个),但是都有相应的代价。问:如何替换使得代价最小。前提是替换之后的序列中,括号是匹配的。如果不能替换为一个括号匹配的序列则输出-1。
输入格式
The first line contains a non-empty pattern of even length, consisting of characters "(", ")" and "?". Its length doesn't exceed (5·10^4). Then there follow (m) lines, where (m) is the number of characters "?" in the pattern. Each line contains two integer numbers (a_i) and (b_i (1 ≤ a_i, b_i ≤ 10^6)), where (a_i) is the cost of replacing the i-th character "?" with an opening bracket, and (b_i) — with a closing one.
第一行是序列,序列长度不超过50000,下面m(m是?的数量)行有每行2个数据,第一个是(的代价,第2个是)的代价
输出格式
Print the cost of the optimal regular bracket sequence in the first line, and the required sequence in the second.
Print -1, if there is no answer. If the answer is not unique, print any of them.
第一行打印代价,第二行打印替换后的序列。不行输出-1
样例输入
(??)
1 2
2 8
样例输出
4
()()
题解
使用贪心
先把每个?变成右括号,如果这时候发现这个右括号没有左括号和它匹配,就从当前位置往前在所有没变成左括号的?中选择变为左括号产生的花费最少的一个,转成左括号.
写代码的时候, 扫描每个?,将它赋值为左括号, 然后将其加入优先队列, 找花费最少的时候, 直接从优先队列里找
如果最后还是存在未匹配的括号,就是无解的情况.
另外统计价值之和时要开long long.
代码
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
const int MAXN = 50005;
char s[MAXN];
int n, lb, rb;
struct Node {
int i, l, r;
bool operator<(const Node &other) const { return r - l < other.r - other.l; }
};
std::priority_queue<Node> pq;
int main() {
scanf("%s", s + 1);
n = strlen(s + 1);
int cnt = 0;
long long sum = 0;
for (int i = 1; i <= n; i++) {
if (s[i] == '(') cnt++;
if (s[i] == '?') {
scanf("%d%d", &lb, &rb);
if (i == 1) {
sum += lb;
s[i] = '(';
cnt++;
continue;
}
sum += rb;
s[i] = ')';
pq.push((Node){i, lb, rb});
}
if (s[i] == ')') {
if (cnt == 0) {
if (pq.empty()) return puts("-1"), 0;
Node t = pq.top();
pq.pop();
if (t.i == n) t = pq.top(), pq.pop();
sum = sum - t.r + t.l;
s[t.i] = '(';
cnt += 2 - (t.i == i);
}
if (s[i] == ')') cnt--;
}
}
if (cnt != 0)puts("-1");
else printf("%lld
%s", sum, s + 1);
return 0;
}