(转:http://blog.csdn.net/without0815/article/details/7697916)
8种排序之间的关系:
1, 直接插入排序
(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排
好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数
也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例
(3)用java实现
1 package com.njue; 2 3 public class insertSort { 4 public insertSort(){ 5 inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; 6 int temp=0; 7 for(int i=1;i<a.length;i++){ 8 int j=i-1; 9 temp=a[i]; 10 for(;j>=0&&temp<a[j];j--){ 11 a[j+1]=a[j]; //将大于temp的值整体后移一个单位 12 } 13 a[j+1]=temp; 14 } 15 for(int i=0;i<a.length;i++) 16 System.out.println(a[i]); 17 } 18 }
2, 希尔排序(最小增量排序)
(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
(2)实例:
(3)用java实现
public class shellSort { public shellSort(){ int a[]={1,54,6,3,78,34,12,45,56,100}; double d1=a.length; int temp=0; while(true){ d1= Math.ceil(d1/2); int d=(int) d1; for(int x=0;x<d;x++){ for(int i=x+d;i<a.length;i+=d){ int j=i-d; temp=a[i]; for(;j>=0&&temp<a[j];j-=d){ a[j+d]=a[j]; } a[j+d]=temp; } } if(d==1) break; } for(int i=0;i<a.length;i++) System.out.println(a[i]); } }
3.简单选择排序
(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;
然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
(2)实例:
(3)用java实现
public class selectSort { public selectSort(){ int a[]={1,54,6,3,78,34,12,45}; int position=0; for(int i=0;i<a.length;i++){ int j=i+1; position=i; int temp=a[i]; for(;j<a.length;j++){ if(a[j]<temp){ temp=a[j]; position=j; } } a[position]=a[i]; a[i]=temp; } for(int i=0;i<a.length;i++) System.out.println(a[i]); } }
4, 堆排序
(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建初始堆的渗透函数,二是反复调用渗透函数(调整堆函数adjust)实现排序的函数。
(2)实例:
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
(3)用java实现
1 import java.util.Arrays; 2 3 public class HeapSort { 4 int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; 5 public HeapSort(){ 6 heapSort(a); 7 } 8 public void heapSort(int[] a){ 9 System.out.println("开始排序"); 10 int arrayLength=a.length; 11 //循环建堆 12 for(int i=0;i<arrayLength-1;i++){ 13 //建堆 14 15 buildMaxHeap(a,arrayLength-1-i); 16 //交换堆顶和最后一个元素 17 swap(a,0,arrayLength-1-i); 18 System.out.println(Arrays.toString(a)); 19 } 20 } 21 22 private void swap(int[] data, int i, int j) { 23 // TODO Auto-generated method stub 24 int tmp=data[i]; 25 data[i]=data[j]; 26 data[j]=tmp; 27 } 28 //对data数组从0到lastIndex建大顶堆 29 private void buildMaxHeap(int[] data, int lastIndex) { 30 // TODO Auto-generated method stub 31 //从lastIndex处节点(最后一个节点)的父节点开始 32 for(int i=(lastIndex-1)/2;i>=0;i--){ 33 //k保存正在判断的节点 34 int k=i; 35 //如果当前k节点的子节点存在 36 while(k*2+1<=lastIndex){ 37 //k节点的左子节点的索引 38 int biggerIndex=2*k+1; 39 //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在 40 if(biggerIndex<lastIndex){ 41 //若果右子节点的值较大 42 if(data[biggerIndex]<data[biggerIndex+1]){ 43 //biggerIndex总是记录较大子节点的索引 44 biggerIndex++; 45 } 46 } 47 //如果k节点的值小于其较大的子节点的值 48 if(data[k]<data[biggerIndex]){ 49 //交换他们 50 swap(data,k,biggerIndex); 51 //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值 52 k=biggerIndex; 53 }else{ 54 break; 55 } 56 }
5.冒泡排序
(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
(2)实例:
(3)用java实现
1 public class bubbleSort { 2 public bubbleSort(){ 3 int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; 4 int temp=0; 5 boolean flag = false; 6 for(int i=0;i<a.length-1;i++){ 7 flag = false; 8 for(int j=0;j<a.length-1-i;j++){ 9 if(a[j]>a[j+1]){ 10 temp=a[j]; 11 a[j]=a[j+1]; 12 a[j+1]=temp; 13 flag = true; 14 } 15 } 16 if(flag == false) 17 break; 18 } 19 for(int i=0;i<a.length;i++) 20 System.out.println(a[i]); 21 } 22 }
6.快速排序
(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)实例:
(3)用java实现
1 public class quickSort { 2 int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; 3 public quickSort(){ 4 quick(a); 5 for(int i=0;i<a.length;i++) 6 System.out.println(a[i]); 7 } 8 public int getMiddle(int[] list, int low, int high) { 9 int tmp = list[low]; //数组的第一个作为中轴 10 while (low < high) { 11 while (low < high && list[high] >= tmp) { 12 13 high--; 14 } 15 list[low] = list[high]; //比中轴小的记录移到低端 16 while (low < high && list[low] <= tmp) { 17 low++; 18 } 19 list[high] = list[low]; //比中轴大的记录移到高端 20 } 21 list[low] = tmp; //中轴记录到尾 22 return low; //返回中轴的位置 23 } 24 public void _quickSort(int[] list, int low, int high) { 25 if (low < high) { 26 int middle = getMiddle(list, low, high); //将list数组进行一分为二 27 _quickSort(list, low, middle - 1); //对低字表进行递归排序 28 _quickSort(list, middle + 1, high); //对高字表进行递归排序 29 } 30 } 31 public void quick(int[] a2) { 32 if (a2.length > 0) { //查看数组是否为空 33 _quickSort(a2, 0, a2.length - 1); 34 } 35 } 36 }
7、归并排序
(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
(2)实例:
(3)用java实现
1 import java.util.Arrays; 2 3 public class mergingSort { 4 int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; 5 public mergingSort(){ 6 sort(a,0,a.length-1); 7 for(int i=0;i<a.length;i++) 8 System.out.println(a[i]); 9 } 10 public void sort(int[] data, int left, int right) { 11 // TODO Auto-generated method stub 12 if(left<right){ 13 //找出中间索引 14 int center=(left+right)/2; 15 //对左边数组进行递归 16 sort(data,left,center); 17 //对右边数组进行递归 18 sort(data,center+1,right); 19 //合并 20 merge(data,left,center,right); 21 22 } 23 } 24 public void merge(int[] data, int left, int center, int right) { 25 // TODO Auto-generated method stub 26 int [] tmpArr=new int[data.length]; 27 int mid=center+1; 28 //third记录中间数组的索引 29 int third=left; 30 int tmp=left; 31 while(left<=center&&mid<=right){ 32 33 //从两个数组中取出最小的放入中间数组 34 if(data[left]<=data[mid]){ 35 tmpArr[third++]=data[left++]; 36 }else{ 37 tmpArr[third++]=data[mid++]; 38 } 39 } 40 //剩余部分依次放入中间数组 41 while(mid<=right){ 42 tmpArr[third++]=data[mid++]; 43 } 44 while(left<=center){ 45 tmpArr[third++]=data[left++]; 46 } 47 //将中间数组中的内容复制回原数组 48 while(tmp<=right){ 49 data[tmp]=tmpArr[tmp++]; 50 } 51 System.out.println(Arrays.toString(data)); 52 } 53 54 }
8、基数排序(不是基于对元素排序码比较基础上的一种排序,属于分配排序,采用“分配”和“收集”的办法)
(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
(2)实例:
(3)用java实现
1 1 import java.util.ArrayList; 2 2 import java.util.List; 3 3 4 4 public class radixSort { 5 5 int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18,23,34,15,35,25,53,51}; 6 6 public radixSort(){ 7 7 sort(a); 8 8 for(int i=0;i<a.length;i++) 9 9 System.out.println(a[i]); 10 10 } 11 11 public void sort(int[] array){ 12 12 13 13 //首先确定排序的趟数; 14 14 int max=array[0]; 15 15 for(int i=1;i<array.length;i++){ 16 16 if(array[i]>max){ 17 17 max=array[i]; 18 18 } 19 19 } 20 20 21 21 int time=0; 22 22 //判断位数; 23 23 while(max>0){ 24 24 max/=10; 25 25 time++; 26 26 } 27 27 28 28 //建立10个队列; 29 29 List<ArrayList> queue=new ArrayList<ArrayList>(); 30 30 for(int i=0;i<10;i++){ 31 31 ArrayList<Integer> queue1=new ArrayList<Integer>(); 32 32 queue.add(queue1); 33 33 } 34 34 35 35 //进行time次分配和收集; 36 36 for(int i=0;i<time;i++){ 37 37 38 38 //分配数组元素; 39 39 for(int j=0;j<array.length;j++){ 40 40 //得到数字的第time+1位数; 41 41 int x=array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i); 42 42 ArrayList<Integer> queue2=queue.get(x); 43 43 queue2.add(array[j]); 44 44 queue.set(x, queue2); 45 45 } 46 46 int count=0;//元素计数器; 47 47 //收集队列元素; 48 48 for(int k=0;k<10;k++){ 49 49 while(queue.get(k).size()>0){ 50 50 ArrayList<Integer> queue3=queue.get(k); 51 51 array[count]=queue3.get(0); 52 52 queue3.remove(0); 53 53 count++; 54 54 } 55 55 } 56 56 } 57 57 } 58 58 59 59 }