• 优化器,sgd,adam等


    https://zhuanlan.zhihu.com/p/32230623

    首先定义:待优化参数: w ,目标函数: f(w) ,初始学习率 alpha

    而后,开始进行迭代优化。在每个epoch t :

    1. 计算目标函数关于当前参数的梯度: g_t=
abla f(w_t)
    2. 根据历史梯度计算一阶动量和二阶动量:m_t = phi(g_1, g_2, cdots, g_t); V_t = psi(g_1, g_2, cdots, g_t)
    3. 计算当前时刻的下降梯度: eta_t = alpha cdot m_t / sqrt{V_t}
    4. 根据下降梯度进行更新: w_{t+1} = w_t - eta_t

    sgd:

    先来看SGD。SGD没有动量的概念,也就是说:

    m_t = g_t; V_t = I^2

    代入步骤3,可以看到下降梯度就是最简单的

    eta_t = alpha cdot g_t

    SGD缺点:下降速度慢,而且可能会在沟壑的两边持续震荡,停留在一个局部最优点。

    SGD with Momentum

    sgd引入一阶动量,为了抑制SGD的震荡,SGDM认为梯度下降过程可以加入惯性。下坡的时候,如果发现是陡坡,那就利用惯性跑的快一些

    m_t = eta_1 cdot m_{t-1} + (1-eta_1)cdot g_t

    t时刻的下降方向,不仅由当前点的梯度方向决定,而且由此前累积的下降方向决定    0.9

    AdaGrad

    怎么样去度量历史更新频率呢?那就是二阶动量——该维度上,迄今为止所有梯度值的平方和:

    V_t = sum_{	au=1}^{t} g_	au^2

    我们再回顾一下步骤3中的下降梯度:

    eta_t = alpha cdot m_t / sqrt{V_t}

    可以看出,此时实质上的学习率由  alpha 变成了  alpha / sqrt{V_t} ,这也是为什么叫自适应学习率

    这一方法在稀疏数据场景下表现非常好。但也存在一些问题:因为sqrt{V_t} 是单调递增的,会使得学习率单调递减至0,可能会使得训练过程提前结束,即便后续还有数据也无法学到必要的知识。

    AdaDelta / RMSProp

     由于AdaGrad单调递减的学习率变化过于激进,我们考虑一个改变二阶动量计算方法的策略:不累积全部历史梯度,而只关注过去一段时间窗口的下降梯度。这也就是AdaDelta名称中Delta的来历。其实只关注了上一个时刻

    V_t = eta_2 * V_{t-1} + (1-eta_2) g_t^2

    这就避免了二阶动量持续累积、导致训练过程提前结束的问题了。

     

    Adam

    谈到这里,Adam和Nadam的出现就很自然而然了——它们是前述方法的集大成者。我们看到,SGD-M在SGD基础上增加了一阶动量,AdaGrad和AdaDelta在SGD基础上增加了二阶动量。把一阶动量和二阶动量都用起来,就是Adam了——Adaptive + Momentum。

    SGD的一阶动量:

    m_t = eta_1 cdot m_{t-1} + (1-eta_1)cdot g_t

    加上AdaDelta的二阶动量:

    V_t = eta_2 * V_{t-1} + (1-eta_2) g_t^2

    优化算法里最常见的两个超参数  eta_1, eta_2 就都在这里了,前者控制一阶动量,后者控制二阶动量。

  • 相关阅读:
    Nginx介绍
    linux vi编辑
    MySql数据类型
    Mysql用户权限控制(5.7以上版本)
    Linux上安装MySQL
    Java得到指定日期的时间
    Spring Boot 整合Redis 实现缓存
    编写高效优雅Java程序
    JVM调优和深入了解性能优化
    JVM执行子程序
  • 原文地址:https://www.cnblogs.com/ymjyqsx/p/9527560.html
Copyright © 2020-2023  润新知