本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90574720
The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤), K (≤) and P (1). The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i]
(i
= 1, ..., K
) is the i
-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 1, or 1, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { , } is said to be larger than { , } if there exists 1 such that ai=bifor i<L and aL>bL.
If there is no solution, simple output Impossible
.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
题目大意:将一个正整数N分解成K个正整数的P次方和,在多个结果里面找出因子之和最大的,若因子之和相同,字典序大的为答案。
思路:主要是DFS的思想,建立一个数组F,用来储存 1~m的P次方,m^P为≤N的最大正整数。find()里面传入四个变量,n为当前find()里面的for循环次数;cnt初始值为K,cnt=0作为递归的边界;tmpSum储存因子之和;sum是总和,sum=N才是符合条件的备选答案~
下一层的递归里的n总是小于等于上一层递归里的n,所以保证了字典序,不需要画蛇添足地写compera函数来筛选答案了(一开始就是因为这个操作导致测试点2答案错误),若无必要,勿增操作。
1 #include <iostream> 2 #include <vector> 3 #include <cmath> 4 using namespace std; 5 int N, K, P, m, fSum = -1; 6 vector <int> ans, F, tmpA; 7 void find(int n,int cnt, int tmpSum, int sum); 8 9 int main() 10 { 11 scanf("%d%d%d", &N, &K, &P); 12 int i = 1; 13 F.push_back(0); 14 while (1) { 15 int x = pow(i, P); 16 if (x > N) 17 break; 18 else { 19 F.push_back(x); 20 i++; 21 } 22 } 23 m = F.size() - 1; 24 find(m, K, 0, 0); 25 if (ans.empty()) { 26 printf("Impossible "); 27 return 0; 28 } 29 printf("%d =", N); 30 for (int i = 0; i < K; i++) { 31 printf(" %d^%d", ans[i], P); 32 if (i < K - 1) { 33 printf(" +"); 34 } 35 } 36 printf(" "); 37 return 0; 38 } 39 void find(int n, int cnt, int tmpSum, int sum) { 40 if(n==0) return; 41 if (cnt == 0) { 42 if (fSum < tmpSum) { 43 if (sum == N) { 44 ans = tmpA; 45 fSum = tmpSum; 46 } 47 } 48 return; 49 } 50 for (int i = n; i > 0; i--) { 51 if (sum <= N) { 52 tmpA.push_back(i); 53 find(i, cnt - 1, tmpSum + i, sum + F[i]); 54 tmpA.pop_back(); 55 } 56 } 57 }