Description
Greatest common divisor GCD(a, b) of two positive integers a and b is equal to the biggest integer d such that both integers a and b are divisible by d. There are many efficient algorithms to find greatest common divisor GCD(a, b), for example, Euclid algorithm.
Formally, find the biggest integer d, such that all integers a, a + 1, a + 2, ..., b are divisible by d. To make the problem even more complicated we allow a and b to be up to googol, 10100 — such number do not fit even in 64-bit integer type!
Input
The only line of the input contains two integers a and b (1 ≤ a ≤ b ≤ 10100).
Output
Output one integer — greatest common divisor of all integers from a to b inclusive.
Examples
input
1 2
output
1
input
61803398874989484820458683436563811772030917980576 61803398874989484820458683436563811772030917980576
output
61803398874989484820458683436563811772030917980576
求a到b的最大公约数
那么只有1和本身这两种情况..
#include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> using namespace std; int main() { string s1,s2; cin>>s1>>s2; if(s1==s2) { cout<<s1<<endl; } else { puts("1"); } return 0; }