传送门:
http://acm.hdu.edu.cn/showproblem.php?pid=1016
Prime Ring Problem
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 63806 Accepted Submission(s): 27457
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
Source
Recommend
分析:
经典的素数环问题
dfs
就是全排列的基础上加上素数环要求的检测
code:
#include<bits/stdc++.h> using namespace std; typedef long long LL; #define max_v 105 int a[max_v]; int vis[max_v]; int n; int isp(int x)//素数检测 { for(int i=2;i<=sqrt(x);i++) { if(x%i==0) return 0; } return 1; } void dfs(int cur)//素数环问题 全排列思想加素数的检测 { if(cur==n&&isp(a[0]+a[n-1]))//判断到最后一个数了 { printf("%d",a[0]);//打印 for(int i=1;i<n;i++) { printf(" %d",a[i]); } printf(" "); return ; }else { for(int i=2;i<=n;i++)//找适合放在cur位置的i { if(!vis[i]&&isp(i+a[cur-1]))//满足要求 { a[cur]=i;//放入 vis[i]=1;//标记 dfs(cur+1);//搜索 vis[i]=0;//回退 } } } } int main() { int t=1,k=0; while(~scanf("%d",&n)) { //if(k) //printf(" "); memset(vis,0,sizeof(vis));//标记清空 a[0]=1;//确定1的位置 printf("Case %d: ",t); dfs(1);//从1开始放数 t++; k++; printf(" "); } return 0; }