• HDU 1016 Prime Ring Problem(素数环问题)


    传送门:

    http://acm.hdu.edu.cn/showproblem.php?pid=1016

    Prime Ring Problem

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 63806    Accepted Submission(s): 27457


    Problem Description
    A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

    Note: the number of first circle should always be 1.

     
    Input
    n (0 < n < 20).
     
    Output
    The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

    You are to write a program that completes above process.

    Print a blank line after each case.
     
    Sample Input
    6 8
     
    Sample Output
    Case 1:
    1 4 3 2 5 6
    1 6 5 2 3 4
     
    Case 2:
    1 2 3 8 5 6 7 4
    1 2 5 8 3 4 7 6
    1 4 7 6 5 8 3 2
    1 6 7 4 3 8 5 2
     
    Source
     
    Recommend
    JGShining   |   We have carefully selected several similar problems for you:  1312 1072 1242 1175 1253 
     
    分析:
    经典的素数环问题
    dfs
    就是全排列的基础上加上素数环要求的检测
    code:
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    #define max_v 105
    int a[max_v];
    int vis[max_v];
    int n;
    int isp(int x)//素数检测
    {
        for(int i=2;i<=sqrt(x);i++)
        {
            if(x%i==0)
                return 0;
        }
        return 1;
    }
    void dfs(int cur)//素数环问题 全排列思想加素数的检测
    {
        if(cur==n&&isp(a[0]+a[n-1]))//判断到最后一个数了
        {
            printf("%d",a[0]);//打印
            for(int i=1;i<n;i++)
            {
                printf(" %d",a[i]);
            }
            printf("
    ");
            return ;
        }else
        {
            for(int i=2;i<=n;i++)//找适合放在cur位置的i
            {
                if(!vis[i]&&isp(i+a[cur-1]))//满足要求
                {
                    a[cur]=i;//放入
                    vis[i]=1;//标记
                    dfs(cur+1);//搜索
                    vis[i]=0;//回退
                }
            }
        }
    }
    int main()
    {
        int t=1,k=0;
        while(~scanf("%d",&n))
        {
            //if(k)
                //printf("
    ");
            memset(vis,0,sizeof(vis));//标记清空
            a[0]=1;//确定1的位置
            printf("Case %d:
    ",t);
            dfs(1);//从1开始放数
            t++;
            k++;
            printf("
    ");
        }
        return 0;
    }
     
  • 相关阅读:
    【体系结构】Oracle 11g体系结构总览
    【RMAN】RMAN初探
    【RAC】Oracle 11g 启动、停止实例和RAC数据库
    【RAC】Oracle 11g RAC安装及配置(三)
    【RAC】Oracle 11g RAC安装及配置(二)
    【RAC】Oracle 11g RAC安装及配置(一)
    【Linux】mount、umount命令
    领域模型(DomainModel)与视图模型(ViewModel)
    ASP.NET MVC与ASP.NET WebForm
    Visual Studio 2017 插件扩展
  • 原文地址:https://www.cnblogs.com/yinbiao/p/9313350.html
Copyright © 2020-2023  润新知