• 一个神秘的oj2093 花园的守护之神(最小割)


    给定一张无向图,你每次可以将一条路的权值增加1,询问最少增加多少次才会使得(s->t)的最短路改变

    QwQ一看到这个题,我就用种最小割的感觉

    我们可以把最短路上的点取出来,然后做最小割呀!!

    首先
    我们将最短路求一下(dis[i])表示(s)(i)的最短距离,(disn[i])表示(t)(i)的最短路。

    如果一条边(u->v)
    满足(dis[u]+val[i]+disn[v]==dis[t])
    那么他就是最短路上的边了。

    这里注意要将双向边看成两个单向边来做,不然会出bug

    上代码

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    #include<queue>
    #define pa pair<long long,long long>
    #define ll long long
    using namespace std;
     
    inline int read()
    {
      int x=0,f=1;char ch=getchar();
      while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
      while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
      return x*f;
    }
     
    inline ll read1()
    {
      ll x=0,f=1;char ch=getchar();
      while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
      while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
      return x*f;
    }
     
    const int maxm = 2e6+1e2;
    const int maxn = 1010;
    const int inf = 2e9;
     
    int point[maxn],nxt[maxm],to[maxm];
    ll val[maxm];
    int cnt,n,m;
    int x[maxm],y[maxm];
    ll w[maxm];
    ll dis[maxn];
    int vis[maxn];
    ll disn[maxn];
    int h[maxn];
    int s,t;
    queue<int> q;
    priority_queue<pa,vector<pa>,greater<pa> > que;
     
    void addedge(int x,int y,ll w)
    {
    	nxt[++cnt]=point[x];
    	to[cnt]=y;
    	val[cnt]=w;
    	point[x]=cnt;
    }
     
    void insert(int x,int y,ll w)
    {
    	addedge(x,y,w);
    	addedge(y,x,0);
    }
     
    void init()
    {
      cnt=1;
      memset(point,0,sizeof(point));
    }
     
    bool bfs(int s)
    {
    	memset(h,-1,sizeof(h));
    	h[s]=0;
    	q.push(s);
    	while (!q.empty())
    	{
    		int x = q.front();
    		q.pop();
    		for (int i=point[x];i;i=nxt[i])
    		{
    			int p = to[i];
    			if (val[i]>0 && h[p]==-1)
    			{
    				h[p]=h[x]+1;
    				q.push(p);
    			}
    		}
    	}
    	if (h[t]==-1) return 0;
    	else return 1;
    }
     
    int dfs(int x,int low)
    {
    	if (x==t || low==0) return low;
    	int totflow=0;
    	for (int i=point[x];i;i=nxt[i])
    	{
    		int p = to[i];
    		if (val[i]>0 && h[p]==h[x]+1)
    	    {
    	    	int tmp = dfs(p,min(low,(int)val[i]));
    	    	val[i]-=tmp;
    	    	val[i^1]+=tmp;
    	    	low-=tmp;
    	    	totflow+=tmp;
    	        if (low==0) return totflow;
    		}
    	 }
    	 if (low>0) h[x]=-1;
    	 return totflow; 
    }
     
    int dinic()
    {
    	int ans=0;
    	while (bfs(s))
    	{
    		ans=ans+dfs(s,inf);
    	}
    	return ans;
    }
     
    void dijkstra(int s)
    {
    	memset(vis,0,sizeof(vis));
        memset(dis,127/3,sizeof(dis)); 
    	dis[s]=0;
    	//vis[s]=1;
    	que.push(make_pair(0,s));
    	while (!que.empty())
    	{
    		int x = que.top().second;
    		que.pop();
    		if (vis[x]) continue;
    		vis[x]=1;
    		for (register int i=point[x];i;i=nxt[i])
    		{
    			int p = to[i];
    			if (dis[p]>dis[x]+val[i])
    			{
    				dis[p]=dis[x]+val[i];
    				que.push(make_pair(dis[p],p));
    			}
    		}
    	}
    }
     
    void dijkstran(int s)
    {
    	memset(vis,0,sizeof(vis));
        memset(disn,127/3,sizeof(disn));
    	disn[s]=0;
    	//vis[s]=1;
    	que.push(make_pair(0,s));
    	while (!que.empty())
    	{
    		int x = que.top().second;
    		que.pop();
    		if (vis[x]) continue;
    		vis[x]=1;
    		for (register int i=point[x];i;i=nxt[i])
    		{
    			int p = to[i];
    			if (disn[p]>disn[x]+val[i]){
    				disn[p]=disn[x]+val[i];
    				que.push(make_pair(disn[p],p));
    			}
    		}
    	}
    }
     
    int main()
    {
      freopen("greendam2002.in","r",stdin);
      freopen("greendam2002.out","w",stdout);
      scanf("%d%d%d%d",&n,&m,&s,&t);
      for (register int i=1;i<=m;i++) x[i]=read(),y[i]=read(),w[i]=read1();
      for (register int i=1;i<=m;i++) addedge(x[i],y[i],w[i]),addedge(y[i],x[i],w[i]);
      dijkstra(s);
      dijkstran(t);
      init();
      for (register int i=1;i<=m;i++)
      {
      	 if (dis[t]==dis[x[i]]+w[i]+disn[y[i]])
      	 {
      	    insert(x[i],y[i],1);
    	 }
    	 if(dis[t]==dis[y[i]]+w[i]+disn[x[i]])
    	 {
    	 	insert(y[i],x[i],1);
    	 }
      }
      cout<<dinic();
      return 0;
    }
    
  • 相关阅读:
    h5学习
    python 基础(十五) socket编程
    python 基础(十四) 正则表达式
    python 基础(十三) time模块
    python 基础(十二) 图片简单处理
    python 基础(十一) pickle 序列化
    python 基础(十) 面向对象
    python 基础(九) 文件操作
    python 基础(八) os模块
    python 基础(七) 异常处理
  • 原文地址:https://www.cnblogs.com/yimmortal/p/10160855.html
Copyright © 2020-2023  润新知