• LeetCode 221. 最大正方形 | Python


    221. 最大正方形


    题目来源:https://leetcode-cn.com/problems/maximal-square

    题目


    在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。

    示例:

    输入: 
    
    1 0 1 0 0
    1 0 1 1 1
    1 1 1 1 1
    1 0 0 1 0
    
    输出: 4
    

    解题思路


    思路:动态规划

    本篇幅使用动态规划的原理来解决该问题。我们用 dp(i, j) 表示以 (i, j) 为右下角,且只包含 1 的正方形的边长最大值。如果能够求出所有的 dp(i, j) 值,其中最大值就是最大正方形的边长,其平方就是我们要求的面积。

    根据题意要求,所给的二维矩阵内,只有包含 1 的才能构造正方形。如果 dp(i, j) =为 0 的情况下,讨论是否能够构成正方形并求出最长边就没有意义,因为这位置不能在构成由 1 组成的正方形中。

    那么如果该位置为 1 的情况下,就需要考虑三个位置的情况,如下图:

    示例

    先看下构成正方形的情况,结合上面的图示,如果当前的值为 1,那么要找出最长的边,就需要考虑从当前位置出发,上面,左边,左上的值都必须是 1,只有这样,再加上当前位置才有可能构成正方形。

    也就是说,这三个方向都不能是 0。但是如果当前位置为 1,但三个方向受限制的情况下,三个方向的边不一定都一样,那么构成的正方形的边长则需要取三者最短边,再加 1,表示加上当前的位置。

    具体如上示图,上面的数字表示以此为正方形右下角的最大边长,其中 ? 表示作为右下角的正方形区域。

    其中左图,受左上角 0 的限制,这里可构成的正方形的最长边为 3。

    中间的图例中,受上边 0 的限制,这里可构成的正方形的最长边为 2。

    最后的图例中,受左边 0 的限制,这里可构成的正方形的最长边为 2。

    可以看出,得出的最长边都是上,左,左上三个正方形中最小边长 + 1。

    所以状态转移方程为:

    dp(i, j) = min(dp(i-1, j), dp(i-1, j-1), dp(i, j-1)) + 1

    那么具体的代码实现如下。

    代码实现


    class Solution:
        def maximalSquare(self, matrix: List[List[str]]) -> int:
            if len(matrix) == 0:
                return 0
            
            rows = len(matrix)
            cols = len(matrix[0])
            
            max_side = 0
            dp = [[0] * cols for _ in range(rows)]
            for i in range(rows):
                for j in range(cols):
                    # 当前的值为 1 时,考虑求构成正方形的最长边
                    if matrix[i][j] == '1':
                        # 当前值为 1,处于首行首列时,不考虑左,上,左上三个方向
                        if i == 0 or j == 0:
                            dp[i][j] = 1
                        else:
                            dp[i][j] = min(dp[i-1][j], dp[i-1][j-1], dp[i][j-1]) + 1
                        max_side = max(max_side, dp[i][j])
            
            square = max_side ** 2
            return square
    
    

    实现效果


    实现结果


    以上就是使用动态规划,找出最长边,进而解决《221. 最大正方形》问题的主要内容。


    欢迎关注微信公众号《书所集录》

  • 相关阅读:
    网络编程
    并发编程-线程池
    并发编程-集合
    并发编程-AQS
    并发编程-CAS
    并发编程-volatile和synchronized的区别
    并发编程-synchronized
    并发编程-java内存模型
    JVM-分代垃圾回收器
    性能优化
  • 原文地址:https://www.cnblogs.com/yiluolion/p/12853100.html
Copyright © 2020-2023  润新知